Filed by Reinvent Technology Partners
Pursuant to Rule 425 under the Securities Act of 1933
and deemed filed pursuant to Rule 14a-12
of the Securities Exchange Act of 1934
Subject Company: Joby Aviation
Commission File No. 001-39524



### Disclaimer

This presentation (bits "Presentation") was prepared by Reinvent Technology Partners ("RIP") and Joby Aero, Inc. ("Joby") in connection with their proposed business combination, by accepting this Presentation, you agree to use this Presentation for the vole purpose of evaluating the potential transaction. Any reproduction or distribution of this Presentation, is while or in part, or the disclosure of its content, without the prior content of this and Jobs is perhibbed. This Presentation is the informational discussion of the Presentation is the informational discussion of the Content of the properties of the Informational discussion of an order to be up according to provide transmission discussion of an order to be up according to provide transmission discussion.

indicatement, negligated or otherwise, intelling therefo. to able astromologia and algore to the the elimination contained in this Presentation is preliminary in malure and is subject to change, and any such changes never hermitical. If the old you desirate well with project the reference contained in this Presentation.

FIDEMAND COCKING STATIMENTS:

The Convent contained many the respect to the proposed transaction between EIP and Johy. The Convent contained many the respect to the proposed transaction between EIP and Johy. The Convent contained many the respect to the proposed transaction between EIP and Johy. The Convent Contained in the Contained Intelling Statements and Contained Intelling Statements Intelling Statements and Contained Intell

TRACCASSASS
All of girls to the trackerwark, copyright, liqus and other intellectual property listed herein belong to their respective owners and this Presentation's use thereof does not imply an efficient with, or endousement by the owners of usor trackerwark, copyright, liqus and other intellectual property, Solely for convenience, trackerwarks and tracker names referred to it his trackersation may appear with the "or " symbols, but such references are not intended to indicate, in any way, that such names and liqus are trademarks or registered trackersation for 180° or 180°.

NOUSTRY AND MARKET DATA.

The Presentation contains statistical data, estimates and forecasts provided by Johly and/or are based on independent industry publications or other publicly available information. In the present the information to the public publication and present and present and present and one of the public publication and other public and other public publications and other publicity available information. Accordingly, neither EIP nor Joby nor any of their affiliates and advisors makes any representations as to the accuracy or completeness of these accuracy.

IMPORTANT INCRAMATION FOR INVISITIOS. AND STOCKHOLDESS.
This document institut is a proposed transaction between KTP and solely, it is connection with the proposed transaction, ETP has fired a registration statement on form 5-4 (133This document institut is a proposed transaction between KTP and solely, it is connection with the proposed transaction. After proxy statement/proposed transaction and after institution of the proposed transaction with the SEC. Refer manking any voring deciding, investment and security highers of 
RTP are upget to read the registration statement, the proxy statement/proposed and all other relevant documents filed of that will be filled with the SEC in connection with the proposed transaction is they become validate because they will consider important information about the proposed transaction.

Investors and security holders will be able to obtain free copies of the registration statement, the proxy statement/prospectus and all othe be filed with the SEC by RTP through the website maintained by the SEC at www.sec.gov.

The documents filed by RTP with the SEC also may be obtained free of charge at RTP's website at https://www.reinventtechnologypartners.com or upon written request to 215 Park Avenue, Floor 11 New York, Nr.





Reid **Hoffman** 



Mark **Pincus** 

- Co-lead Director of RTP
   Founder and Chairman of Zynga
   Founder of Tribe.net, Support.com, and FreeLoader



Michael Thompson

CEO, CFO & Director of RTP

Founder and Portfolio Manager
Capital



David Cohen



Daniel Urdaneta



Matt DeGraw

# Reinventing Mobility: Joby

# Reinvent





Reinvent goal: to partner with amazing founders with game changing technologies who are inventing or reinventing industries

Experience as entrepreneurs, operators, investors, and public company board members helping drive execution and strategy

Structurally committed to long-term partnership with Joby and alignment with investors through price and time-based vesting up to 5 years

Joby offers opportunity for Venture Capital @Scale

Reinvent vision for Joby: Uber meets Tesla in the air

World class team and leading technology in pole position to be first to certification and commercialization

Transaction provides funding to help get through certification and first stages of commercialization

### Joby Has a Highly **Attractive and Scalable**

# **Business Model**

Fully Burdened Aircraft Production Cost (2)

Contribution Margin Per Aircraft

Payback Period

### Attractive Unit Economics...

### ...Lead to a Scalable Financial Profile

### 2026E Financial Highlights



1.3

~1.3 years in 2026E

Revenue / % YoY Growth

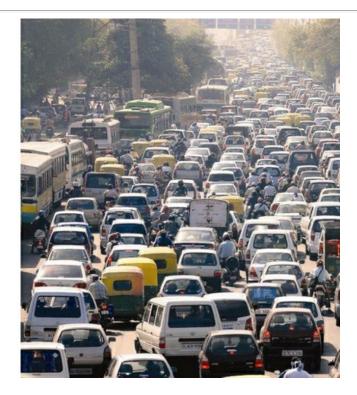
\$2,050M / 185%

Gross Profit(3) / Gross Margin %

\$1,183M / 58%

Adjusted EBITDA(4) / EBITDA Margin %

\$824M / 40%


| Table of Contents |                                                                          |                            |   |
|-------------------|--------------------------------------------------------------------------|----------------------------|---|
|                   | The Time is Now                                                          | 8                          |   |
|                   | Historical Context                                                       | 19                         |   |
|                   | Executive Investment Summary                                             | 26                         |   |
|                   | Joby Vehicle Advantage: Technology Certification Go-To-Market Production | 55<br>57<br>62<br>69<br>76 |   |
|                   | Massive and Growing Market                                               | 82                         |   |
|                   | Competitive Dynamics                                                     | 87                         |   |
|                   | Key Business Drivers & Unit Economics                                    | 92                         |   |
|                   | Transaction Context                                                      | 102                        |   |
|                   | Financial Overview                                                       | 106                        |   |
| Reinvent          |                                                                          |                            | 7 |

# The Time is Now

### **Congestion is a Problem**

Secular trends: urbanization causing congestion, greater emissions; cost of infrastructure increasing in cities; increases in traffic causing large economic losses

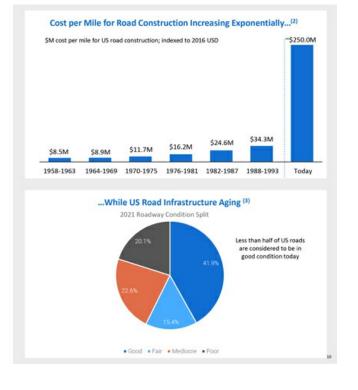
- Congestion is bad ... and getting worse
- Population growth, urbanization, and underfunded infrastructure are key contributors
- · Ridesharing and delivery increasing ground traffic
- LA traffic has increased 80% since 1990
- 4.6B/yr hours wasted in traffic in top 15 U.S. metros alone<sup>(1)</sup>
- 29% of CO2 emissions attributable to transportation sector in U.S. (1)
- 70% of global population will be living in cities by 2050 (1)



Reinvent

(1) Joby Analyst Day Presentation

### Road Infrastructure Costs are Unmanageable


- Need for new solutions. Road infrastructure cost increasing dramatically driven by labor, land, permitting, and materials cost inflation
- Estimated impact of congestion on US trucking industry: \$28B per year<sup>(1)</sup> – represents dead-weight cost passed to consumers



Reinvent

Nttps://www.brookings.edu/~p-content/uploads/2019/07/2019-07-12\_infrastructure\_costs\_v2.pdf
 Data from TRIP\_a National Transportation Research Nonprofit (http://www.sodigest.com/ontarget/21-03

64 ASCE State US Roads phg?cid+18432)



### **Time Lost in Traffic**

- Texas A&M estimates that time lost in traffic cost Americans "\$180 billion in 2017 and is forecasting that number to rise to "\$237 billion by 2025
- Problem just as acute in emerging market countries that are quickly urbanizing and industrializing

| 2017 CONGESTION RANK | URBAN AREA                        | HOURS LOST IN CONGESTION PER<br>AUTO COMMUTER | EXCESS FUEL PER<br>AUTO COMMUTER<br>(GALLONS) | COST PER DRIVER |  |
|----------------------|-----------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------|--|
| 1                    | Los Angeles-Long Beach-Anaheim CA | 119                                           | 35                                            | \$2,676         |  |
| 2                    | San Francisco-Oakland CA          | 103                                           | 39                                            | \$2,619         |  |
| 3                    | Washington DC-VA-MD               | 102                                           | 38                                            | \$2,015         |  |
| 4                    | New York-Newark NY-NJ-CT          | 92                                            | 38                                            | \$1,947         |  |
| 5                    | Boston MA-NH-RI                   | 80                                            | 31                                            | \$1,580         |  |
| 6                    | Seattle WA                        | 78                                            | 31                                            | \$1,541         |  |
| 7                    | Atlanta GA                        | 77                                            | 31                                            | \$1,653         |  |
| 8                    | Houston TX                        | 75                                            | 31                                            | \$1,508         |  |
| 9                    | Chicago IL-IN                     | 73                                            | 30                                            | \$1,431         |  |
| 10                   | Miami FL                          | 69                                            | 34                                            | \$1,412         |  |

Reinvent

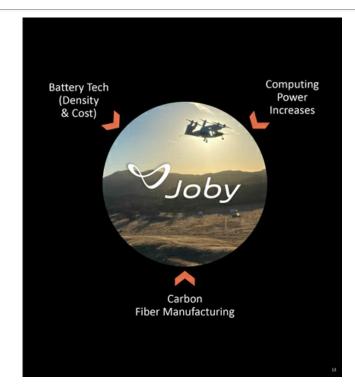
Source: Tayon A&M 2010 Littor Mobile Dans

11

### The Time is Now

For almost 100 years, we have expected "flying cars" / "flying taxis"... what makes now the right time?

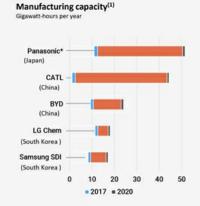


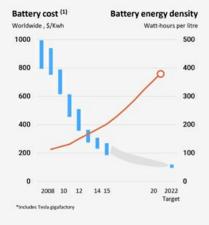







### Why Now?


- The idea of eVTOL has been around for decades...
- JoeBen himself has been thinking about how to create a viable eVTOL aircraft since the early 1990s
- Only recently have <u>enabling technology</u> <u>improvements</u> made it possible to build an eVTOL aircraft with range, speed, noise, payload, and safety profiles to reliably deliver solutions for consumers and companies




### Rapid Improvements in Battery Technology

- Improvement in energy density and decrease in S/kWh for the first time enable range, speed, and payload to address customer use cases
- Enough high-quality battery manufacturing capacity to allow Joby to scale
- Current energy density delivers performance required to operate medium-range eVTOL flights
- Continued focus, investment, and commercialization of battery technology, especially from car EV companies, will drive further battery improvements
- Tesla expects to have >100 gigafactories by 2040
- Battery density has historically, and is expected to continue to, improve at ~5% p.a.

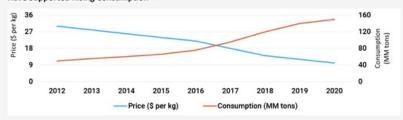
Electric motors are quieter than combustion engines, but low battery density historically limited the application of electric motors in aviation. Battery evolution is enabling the practical use of electric motors in aircraft as increased battery density is increasing range and payload of electric powered aircraft. The shift to electric motors plus improvements in rotor design paved the way for quieter aircraft.





Reinvent

1) Caim ERA (https://www.economist.com/graphic-detail/2017/08/16/the-growth-of-lithium-ion-battery-power); US Department of Energy


### Carbon Fiber Tech Advancing and Manufacturing Capabilities Scaling

- As a metal replacement, carbon fiber composites offer 10 times the strength of steel at half the weight
- Increasing demand for carbon fiber has led to technology advancements in manufacturing speed and volumes
- Such manufacturing advancements have driven cost improvements, expanding the demand for and application of carbon fiber

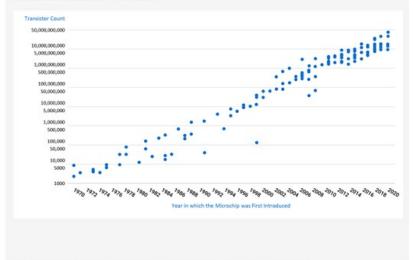
### Carbon Fiber Demand, Metric Tons (1)

| End market     | 2017   | 2020 (est.) | 2025 (est.) |
|----------------|--------|-------------|-------------|
| Aerospace      | 18,000 | 24,500      | 30,000      |
| Industrial     | 68,000 | 85,000      | 142,350     |
| Sports/Leisure | 12,000 | 13,800      | 19,000      |
| Total          | 98,000 | 123,300     | 191,350     |

### Falling Carbon Fiber Prices Due to Lower Manufacturing Costs Have Supported Rising Consumption (2)



Reinvent


Composites World (https://www.compositesworld.com/articles/the-making-of-carbon-liber) Infoxys (https://www.infoxys.com/engineering-services/white-papers/documents/carbon-composites-cost-effective.pdf

### Continuous Improvements in Localized Compute Power

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers

- Improvements in the last thirty years of compute power and other geospatial technologies (GPS) have allowed for planes to integrate and design around onboard technologies
- Joby software system powered by on-board compute adjusts flight mechanics in real time in safe and redundant way
- E.g., automatic shift from vertical to horizontal flight profiles in all conditions

Moore's Law: The Number of Transistors on Microchips Doubles Every Two Years (1)



### Shift Toward Sustainable Mobility and Electrification of Transportation

# Electrification of the grid and reducing operating emissions are key components in the fight against climate change

- Sustainable mobility has never been more needed given the threat that climate change poses to our communities and planet. According to the U.S. Environmental Protection Agency (EPA), the top source of CO2 emissions in the U.S. is the transportation sector
- Improvements in batteries and power electronics alongside the ever-increasing performance of microelectronics have enabled the development and deployment of new sustainable energy and transportation solutions
- By extending electrification of transportation to the skies and through zero operating emissions, Joby can make a meaningful contribution to tackling the dual challenges of congestion and climate change



Reinvent

17

### Aerial Ridesharing Unlocks the Third Dimension of Urban Transportation

### Sustainable

All-electric aircraft, zero operating emissions

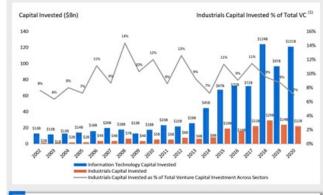
### **Fast**

5X faster than driving in major metros<sup>(1)</sup>

### Scalable

Exponential scaling of routes at a fraction of the infrastructure cost






# Historical Context

### Silicon Valley Retrenches to **Capital Light**

- Over the last 20 years, Silicon Valley has retrenched into capital-light / asset-light business models
- · Enabling technologies have allowed IT business models to scale with increasingly small amounts of upfront capital, with increasingly high incremental margins. Capital has chased high ROIC investment opportunities
- As a result, capital shifted away from funding longerpayback hard technology problems

Reinvent



"We wanted flying cars, instead we got 140 characters."

-Peter Thiel's original subtitle to his Founder Fund's manifesto entitled "What Happened to the Future?"

Additional quotes from the manifesto:

"The future that people in the 1960s hoped to see is still the future we're waiting for today, half a century later. Instead of Captain Kirk and the USS Enterprise, we got the Priceilne Negotiator and a cheap flight to Cabo... As of or what seemed futuristic then remains futuristic now, in part because these technologies never received the sustained funding lavished on the electronics industries."

"[One] major area of improvement is overcoming the tyranny of distance. Cheaper, faster transportation has been a major lubricator of trade and wealth creation. For almost two continues, technology has improved transportation relentiessly. Unfortunately, over the past thirty years, there have been no radical advances in transportation technology."

"You have as much computing power in your IPhone as was available at the time of the Apollo missions. But what is it being used for? It's being used to throw angry birds at pigs; it's being used to send pictures of your cat to people halfway around the world; it's being used to check in as the victual mayor of a virtual nowhere while you're riding a subway from the nineteenth century."

— Peter Theid of the 2013 Afficien institute Debote with Marc Andressen

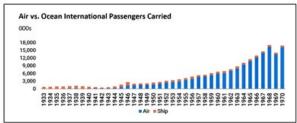
### Consumer Behavior Adapts Quickly to New Transportation Modalities

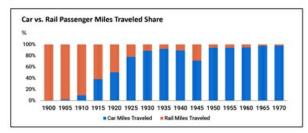
Humans have Consistently Underestimated How Quickly Transportation Modalities Change

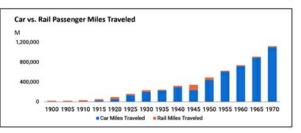
- No one in the early 1800s would have expected to be able to move around the country in railroads; similarly in 1900 with cars
- We expect eVTOL may be one of the next unlocks in transformative transportation modalities
  - Having a piloted service will aid with consumer acceptance
  - Infrastructure both adapts to and helps fuel more demand
  - Future of transportation is not as far off as we expect



Reinvent


21


### A New Kind of TAM: Expanding the Pie


Radical changes to transportation modality don't so much 'cannibalize' the current/prevailing form of transport as much as totally re-invent and re-scale the size of the market itself, frequently by orders of magnitude

### New Travel Capabilities Offered by eVTOLs Could Unlock Revenue Opportunities That are Not Possible Today







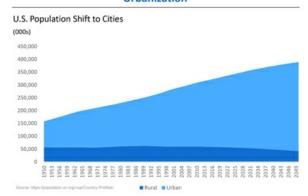


Reinvent Source: US Census Dureau

# U.S. DoD Advances Leading to Civilian Adoption

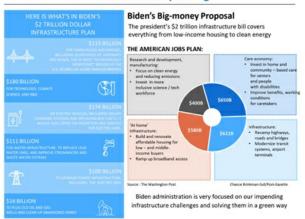
U.S. DoD often leads the civilian approval and development of key aerospace technologies such as: jet engines, satellites, GPS, drones, and radar






Joby's U.S. Department of Defense contract is a key advantage as it allows for advanced product testing in real settings, qualitatively helps with certification, and accelerates civilian acceptance and trust

### Macro Trends - World Should Look Completely Different in 2030


This decade is potentially a "once in a 100-year decade" as it relates to infrastructure spending

### Urbanization



Population growth and urbanization are going to dramatically increase congestion in cities and the need for increased transportation capacity

### **Infrastructure Spending**



### Macro Trends - World Should Look Completely Different in 2030 (cont'd)

Expanding ground-based networks to address congestion and move people cost-effectively through cities has become increasingly difficult, if not impossible

### **Cost Per Mile of Infrastructure Spending**

Light Rail Lines ~\$100M / mile (1) Four-lane freeway ~\$20M / mile (2) **Subway** ~\$600M / mile (3)

Joby Minimal \$ / mile

Joby infrastructure costs limited to skyports and charging stations. Demand for service may drive incremental opportunity for real estate partners (offices, apartment buildings, etc.) to fund development costs









Cities need a new, sustainable mobility solution to address their increasing density and populations.

The magnitude of this problem is so large that there will likely need to be winners across multiple form factors.

Reinvent

(1) https://web.archive.org/web/20081028214006/http://www.lightrail.com/projects.htm (2) https://compassinternational.net/order-magnitude-noad-highway-costs/ (2) https://www.markstooco.org/2016/01/15/htm.hvsur-us-archive-cost-comparison/

# Executive Investment Summary

### Reinvent Investment Thesis

### 1 Team & Technology Leadership

World-class eVTOL team; clear technology leaders in developing eVTOL technology fit-forpurpose (range, noise, speed, payload, and safety) with 10+ years of R&D development, 1000+ test flights to date

# 2 Strongly positioned to be first-to-market with FAA certified aircraft

Signed G-1 paper with FAA and DoD relationship cement Joby's lead and provides clear path to first Part 23 certification; reciprocity agreements allow for fast global expansion; relationships with DoD and Toyota de-risk development and embed meaningful scale manufacturing expertise

### 3 Highly attractive business model & unit economics

Vertically integrated business model provides "winner-take most" localized network effects. Recurring revenue business model with high contribution margin and 1.3 yr payback

### 4 Large Macroeconomic and Environmental Tailwinds

Provides zero operating emission method for transporting people and services, in back-drop of increasing urbanization, pollution; aligned with long-term infrastructure development goals of countries around the world

### 5 Immense Potential TAM -> Small Penetration = Large Outcomes

Use cases for UAM across human transportation and movement of goods support \$5008+ potential TAM; ability to build large and valuable business with modest penetration assumptions

### 6 Potential for Compounding Network Effects; "Winner Take Most"

Aggregating demand while controlling service allows Joby to capture economic value; barriers to entry from infrastructure development and network density drive up customer value proposition and benefit first to market

### 7 Many "ways to win" with upside tailwinds

While Joby's current plan is optimized for the business model and use case TAM, Joby has significant room to expand its use cases; improvements in enabling technologies (batteries, fuel cell technology, autonomy) to broaden use cases

### 8 Downside protection from accumulated IP & strategic value

Asymmetric return profile at \$4.5B TEV given strategic value, existing progress. De-risked runway to commercialization with \$2.08 of PF capital. Meaningful downside protection from accumulated IP and certification progress in both commercial and U.S. DoD use cases

### **World-class Team**

### Visionary Leadership with 20+ **Years Experience**



Paul Sciarra Executive Chairman

experience as Pinterest Co-founder; involved with Joby since 2014



### JoeBen Bevirt CEO, Chief Architect, Co-founder

30+ year goal of scaling eVTOL 30+ year goal of scaling eVTOL since college; 12 years as founder of Joby working on hundreds of iterations to create the Joby eVTOL that exists today; Proven leader and developer of a successful business with Joby/Gorillapod

### World-class **Functional Experts**



**Eric Allison** 

Next to JoeBen, among the most experienced eVTOL experts as former head of Uber Elevate; former CEO of Zee; PhD in



Bonny Simi



Joe Brennan

### **Key Partnerships** De-Risk Path to Market

TOYOTA

Dedicating large resources towards production design and execution



Go-to-market and demand aggregation partnership



Near-term DoD deployments and



R&D subsidy



**Matt Field** 



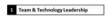
Jon Wagner

Responsible for battery program for Tesla Model S & X; expert in battery powertrain technology





Greg Bowles
Head of Covernment & Regulatory Affairs


Didier Papadopoulos
Head of Programs & Systems
Engineering

Former Co-Chairman of the Former VP of Aviation Systems Former CFO of Ford North FAA Part 23 Reorganization and over 15 years of experience. America; prior to Ford, Aviation Relemaning Committee; deep connectivity across government and regulatory bodies at CAE of Covernors of the Federal Reserve Systems.





Joby is the first company developing a comparable aircraft to have received airworthiness approval from the U.S. Air Force



# The Right Aircraft for the Market



Vertical take off and landing



4 passenger for optimal economics



Piloted to facilitate certification and public acceptance



150+ mile max range



200 mph top speed



Zero operating emissions

## Reinvent

### **Building Deep Competitive Lead**

- First to market with the right aircraft
- In-house development of key parts and technologies
- World class engineering and certification team
- FAA Part 23 general aviation certification enables global reach



### **Clear Technology Leader**

### Joby's Leadership Position is Supported by a Wide Consensus of Participants and Experts

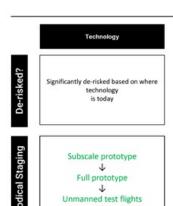
"When comparing current air taxi providers more holistically, we identified Joby Aviation as the most promising air taxi startup at this point. Not only has the U.S.-based startup raised massive amounts of venture capital needed to develop the necessary technology stack, but it has also built a high-quality patent portfolio. In fact, Loby Aviation possesses one of the most important patents in the air taxi space of all (measured by Competitive ImpactTM), which relates to aerial vehicle design and noise reduction technology. The latter appears to be of utmost importance to achieve public acceptance." — Lufthansa Innovation Hub, "Are Air Taxis Ready For Prime Time, A Data-Driven Report on the State of Air Taxis in 2021"



Joby is the highest ranked Advanced Air Mobility (AAM) company by a comfortable margin in SMG Consulting's AAM Reality Index

### **AAM REALITY INDEX**®

| OEM                |    | ARI | Use Case       | Vehicle Type    | Propulsion | Operation  | Vehicle      | First Flight | 66   | Country     |
|--------------------|----|-----|----------------|-----------------|------------|------------|--------------|--------------|------|-------------|
| Joby Aviation      |    | 7.9 | Air Taxi       | Vectored Thrust | Electric   | Ploted     | 84           | 2019         | 2024 | USA         |
| Beta Technologies  | ** | 7.5 | Cargo/Air Taxi | Lift + Cruise   | Electric   | Plioted    | Alia 5250    | 2020         | 2024 | USA         |
| Wisk               | 1  | 7.5 | Air Taxi       | Lift + Cruise   | Electric   | Autonomous | Cora         | 2018         | -    | USA         |
| Ehang              | 1  | 7.4 | Air Taxi       | Multicopter     | Electric   | Autonomous | 216          | 2019         | 2021 | China       |
| Archer Aviation    | 1  | 6.9 | Air Taxi       | Vectored Thrust | Electric   | Plioted    | Maker        | 2021         | 2024 | USA         |
| Hyundai            | ** | 6.7 | Air Taxi       | Vectored Thrust | Electric   | Ploted     | 5-A1         | 2025         | 2028 | South Korea |
| Volocopter         | ** | 6.2 | Air Taxi       | Multicopter     | Electric   | Ploted     | VoloCity     | 2020         | 2022 | Germany     |
| Lilium             | 1  | 6.2 | Regional/Cargo | Vectored Thrust | Electric   | Plioted    | Jet          | -            | 2024 | Germany     |
| Eve Air Mobility   | ** | 6.0 | Air Taxi       | Lift + Cruise   | Electric   | Ploted     | Eve          |              | -    | Brazil      |
| Sabrewing          |    | 5.9 | Cargo          | Vectored Thrust | Hybrid     | Autonomous | Rhaegal RG-1 | 2021         | 2022 | USA         |
| Vertical Aerospace |    | 5.9 | Air Taxi       | Vectored Thrust | Electric   | Plioted    | VA-X4        | 2021         | 2024 | UK          |
| Airbus             |    | 5.6 | Air Taxi       | Multicopter     | Electric   | Plioted    | ChlArbus     | 2019         | 2024 | France      |
| Pipistrel          |    | 5.5 | Cargo          | Lift + Cruise   | Electric   | Autonomous | Nuuva V300   |              | 2023 | Slovenia    |
| Elroy Air          | ** | 5.4 | Cargo          | Lift + Cruise   | Hybrid     | Autonomous | Chaparral    | 2019         | 2023 | USA         |
| Dufour Aerospace   |    | 5.2 | EMS            | Vectored Thrust | Hybrid     | Plioted    | aEro 3       | 2022         | 2026 | Switzerland |
| Det                |    | 5.0 | Air Taxi       | Vectored Thrust | Electric   | Plioted    | 4EX          | -            | -    | USA         |


Reinvent

https://hmit.com/ep-content/uploads/2021/02/Report\_Are-Air-Taxis-Ready-For-Prime-Time\_Air\_LIH\_2021;
 https://samrealityindex.com/

55

### Strongly Positioned to be First-tomarket with FAA Certified Aircraft

### What Needs to be Done?



Manned test flights











One city

W
Multiple Cities

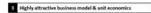
W
Widespread adoption

### Key Business Model Unlock

### Joby's Ability to Get to Market is Unlocked by the Interplay of Three Key Factors:

### Aircraft's Technology

### Key Technology Highlights


- <u>Noise</u>: 65dBa at hover and effectively silent overhead make Joby quieter than a conversation; designed for pleasant noise profile
- Range: max range of 150mi plus reserves on a single charge
- <u>Safety:</u> each propeller is powered by two independent electric motors creating high levels of redundancy
- <u>Software and tech stack</u>: vehicle simple to fly enhancing safety and pilot accessibility

### Certification Pathway

- Signed G-1 agreement defines clear route to certification under existing Part 23 regulations
- Part 135 application submitted for airline operations
- Pilot production underway to support production certification
- Certification basis expedites transferability globally

### **Full Vertical Integration**

- Ability to "bear-hug" safety of aircraft by being designer, manufacturer, and operator
- Creates attractive recurring revenue business model that captures profit pools in market
- Ability to guide market entry and development to drive network density, increase value proposition, and create barriers to entry



### **Traditional Ride-Sharing Case Study**

· Uber serves as attractive case study on winner-take-most markets: higher rider and driver density + better customer traffic data -> cheaper and faster service



 Uber has 65%+ market share in many mature markets in which it competes, allowing its economics to improve as it scales towards maturity:

### Take Rate (Market Entry)

10%

Take Rate (Today)

Mid 20%'s

Joby likely to enjoy higher barriers to entry than ride-sharing:

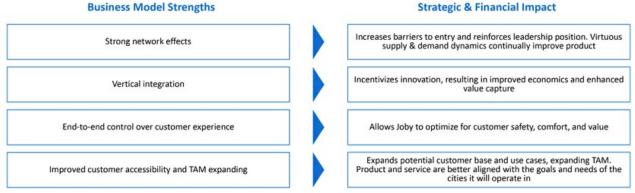
- Proprietary vehicle technology
- · Manufacturing capital intensity
- Stringent regulatory oversight
   Potential exclusive use infrastructure

### Rides EBITDA Margin (Future)

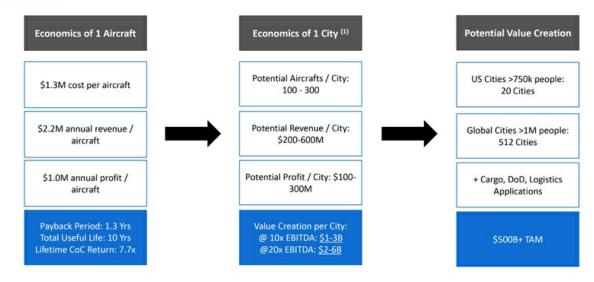
20-25% Today

Rides EBITDA Margin (Today)

45% Long-Term Target

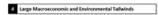

→ Strong mature market profit pool capture for Joby

> Uber's most mature markets worth >25% of bookings have already achieved ~45% EBITDA margins




Joby doesn't intend to sell vehicles to third parties or individual consumers. Instead, it expects to manufacture, own, and operate the aircraft, building a vertically integrated transportation company that will deliver a convenient app-based aerial ridesharing service directly to end-users

### **Business Model Strengths**




### Overview of Unit Economics



Reinvent

(1) Assumes management utilization assumptions: 7 hours spent in flight per day, average trip length of 24 miles; load factor of 2.3 passengers per trip; \$3.00 per seal n \$0.66 cost per available seat mile.



### Megatrends Driving Growing TAM

### **Macro Trends**

### Driving increased demand and urgency



Increasing population density globally



Accelerating land infrastructure development costs



Green energy transportation demand

### **Technology Trends**

Improving product and expanding modalities



Compute power – AI, Machine Learning, Autonomous Transport



Energy density — batteries, hydrogen fuel cells



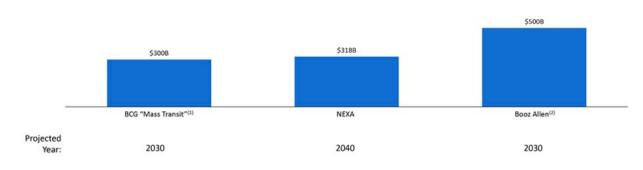
Light weight materials manufacturing (carbon fiber)



Wright's Law: cost curves declining across materials as volumes scale

Reinvent

36

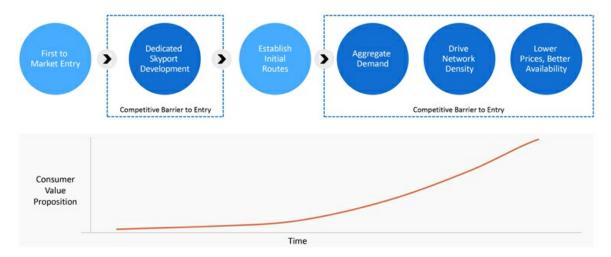



#### Large TAM for UAM

Solving large problems  $\xrightarrow{}$  potential for immense shareholder value creation over the next decade

- · Joby long-term mission: save 1 billion people 1 hour a day
- \$500B+ potential market across applications
- Market is big enough for multiple winners across multiple modalities

#### Urban Air Mobility TAM Estimates Range from \$300B to \$500B+




Reinvent

Source:
(1) BOC The Aerospace industry Isn't Ready for Flying Cars – Here's What OEMs and Suppliers Must Do To Capital
(7) Bocs Man Marritge Littue Air Mobile Market Shots – +1 21-18.

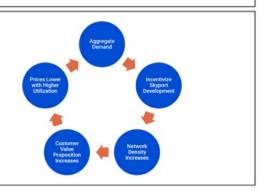
.

# Consumer Value Proposition & Network Effects Compound



# Why Being the Leader Matters – Compounding Network Effects

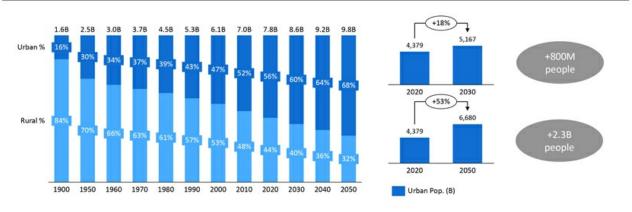
#### **Demand Network Effects**


Demand network aggregator w/ localized network effects



## Supply Side Economies of Scale

Beneficiary of economies of scale from being first to produce at scale; technology advantage compounds


Being first to market drives "winner take most" flywheel in each market Joby enters



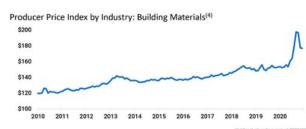
# Long-Term Upside Drivers — Macroeconomic Trends

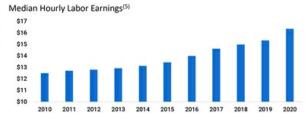
- Over the next 30 years, over 2.3 billion people are expected to move into urban areas. This will drive large increases in congestion and the need for new urban transport solutions
- Joby will be the beneficiary of this increase given the flexibility, cost, and pollution advantage of eVTOL

#### **Global Population Growth & Urbanization**



Reinvent


urce: OWID based on UN World Urbanization Prospects 2018 (https://population.un.org/wup


#### Long-Term Upside Drivers — Macroeconomic Trends

#### **Land Infrastructure Development Costs**



- Labor and materials inflation trends are driving up land infrastructure development costs and making aerial alternatives much more attractive
- Joby requires minimal infrastructure costs Joby infrastructure costs limited to skyports and charging stations. Demand for service may rive incremental opportunity for real estate partners (offices, apartment buildings, etc.) to fund development costs
- You could build a whole city's worth of skyports for one mile of freeway





1) https://wwb.archivik.org/web/20001028214006/http://lenwik.lightraal.com/projects.html 2) https://www.stongtowsik.org/picursal/202011/27/how-much-does-a-milli-of-road-actually-cos 3) https://www.starketplace.org/2018/04/11/submisys-us-expensive-cost-comparison/

Reinvent

\*\*

# Long-Term Upside Drivers — Macroeconomic Trends

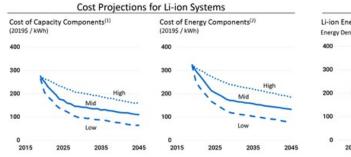
#### **Demand for Green Infrastructure Increasing**

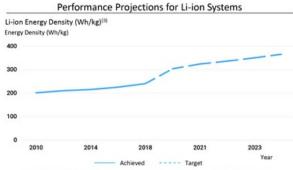
Global demand for more energy efficient infrastructure will be a many decade tailwind








"Those that do take action and make bold investments in their people in a clean energy future will win the good jobs of tomorrow and make their economies more resilient and more competitive. So let's run that race [...] this is a moral imperative, an economic imperative. A moment of peril but also a moment of extraordinary possibilities."


- Joe Biden

#### Long-Term Upside Drivers — Technology Improvements

Joby will benefit from <u>continued</u> rapid improvements in battery and other clean energy storage technologies. While Joby's aircraft can hit its specs based on today's battery tech and improvements aren't a necessity, continued battery improvements provide cost and performance upside

#### **Battery Technology Improvements**






Li-ion batteries have and are expected to continue to improve at  $^{\sim}5\%$  p.a.

Further, solid state lithium-ion batteries and/or hydrogen technology would likely offer a step function improvement to today's battery technology and are expected to start being commercialized in the next few years. Based on their current designs, both technologies would offer safer, cheaper, and more energy efficient batteries enabling longer range flights and quicker charge times

Reinvent

(1) https://www.nnel.gov/docs/fy20cs/75385.pdf (2) https://mi.org/up-content/uploadin/2019/10/mis\_breakthrough\_balteries.pdf (3) https://aisa.nkkei.com/ScionfortMost-read-in-2020/Toucta-a-came-changing-solid-state-baltery-en-coute-for-2021-del

43



# Long-Term Upside Drivers — Technology Improvements

#### **Continued Compute and AI Improvements**

- Localized compute power improvements will continue to enable ability of Joby to perform powerful localized calculation to expand automated functions of the aircraft
- Commercial planes already effectively operate on autopilot today. Al will alter the unit economics and form factor to open-up smaller flight lengths and increase network density
- Autonomous flights broaden form factors to smaller #s of people and open up shorter flight profiles

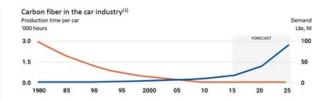




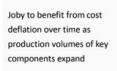
# Long-Term Upside Drivers — Technology Improvements

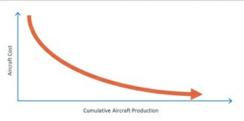
#### Continued Improvement of Enabling Technologies Will Further Increase Addressable Market

Further Improvements in batteries, compute power, and AI are going to continue to expand Joby's addressable use cases and flight profiles




- Hydrogen and/or solid-state (or other) battery improvements will enable longer-range trips (capturing 150mi-400mi+) over time
- Continued localized compute and AI improvements will enable autonomous flights which act as an unlock for trips 0-5 miles while reducing costs of aerial ride-sharing across the board
- Autonomous flights will likely also unlock additional use cases and business models (e.g., transport / logistics, ambulatory, etc.)


# Long-Term Upside Drivers — Technology Improvements


#### **Light Weight Manufacturing Improvements**

- Rapid improvements in cost, scale, and speed of manufacturing aerospace grade carbon fiber
- Team has experience with largest carbon fiber programs in aerospace



#### Wright's Law Benefits







Reinvent

1); Looker phips, Number constructed the Composeth SCM Assertant SCO Assort SCOM School SCOM ASSERT SCOM ASSERT SCOM ASSERT SCORE ASSERT SCORE ASSERT SCORE ASSERT SCORE ASSERT A

# Long-Term Upside Drivers — What an Upside Case Could Look Like

#### A Fully Embedded eVTOL Future

Autonomous Flights Drive Multiple Use Cases

- Aerial Ride Sharing
- Transport & Delivery
- Ambulatory & Emergency
- · Department of Defense
- Short Flight Plane Replacement



Reinvent

(2) https://worldpopulationreview.com/world-cit

47

#### Asymmetry of Return Profile

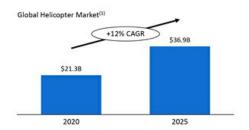
#### **Key Upside Drivers**

#### (01) MACROECONOMIC TRENDS:

- Global Population Density & Urbanization
- Land infrastructure development costs
- Demand for green transportation infrastructure

#### (02) TECHNOLOGY IMPROVEMENTS:

- Energy density increases
- Continued compute & Al improvements
- Light weight materials manufacturing scaling
- Cost deflation as volumes scale (Wright's Law)


#### **Margin of Safety Drivers**

- Many options available to Joby that provide margin of safety in adverse scenarios:
- Large Helicopter replacement TAM
- DoD opportunities in US and Globally
- Pivot to international roll-out
- Selling aircraft
- Strategic interest in accumulated IP
- Adjust target use cases or business model (e.g., transport / logistics)

#### Margin of Safety – What Do Downside Cases Look Like?

#### Helicopter Replacement TAM Capture Alone Worth \$5B+

- Global helicopter market is expected to grow at a 12% CAGR with large demand for eVTOL  $^{\{1\}}$
- The US has ~9,000 civil helicopters in its fleet (2)
- If Joby can capture just 5% of the total helicopter market, this alone would support ~\$5.0bn of value (\$1.9bn revenue x 20% margin x 13x EBITDA)







Existing DoD contracts offer large opportunity with TAM expansion

- \$40MM+ in Contracts secured with an estimated \$100MM+ in progress
- Significant expansion opportunity for uses driven by:
  - DoD desire to embed green technologies into operational use cases
- Quiet and efficient sound profile enhances logistics use cases
- Large helicopter upkeep and maintenance cost
- Interest from other allied militaries around the world likely to be substantial

Reinvent

https://www.markets.andmarkets.com/Market-Reports/helicopters-market-253487785
 https://www.statista.com/statistics/778282/commercial-helicopters-feet-size-country/

49

# Margin of Safety – What Do Downside Cases Look Like?

#### **Defense Opportunity in the US and Globally**



- The opportunity to sell into the DoD is highly attractive on a standalone basis
- Existing DoD contracts and operations de-risk probability of achieving civilian certification as Joby is able to use and track the vehicle in live settings in advance of getting certified allowing for further product tweaks and development
- We believe that qualitatively, DoD use and certification could provide some level of comfort to the FAA as well

# Margin of Safety – What Do Downside Cases Look Like?

# Sale of Aircraft Instead of Operate<sup>(1)</sup>

**▲** DELTA

 Option to sell aircraft to fund portion of operations and de-risk go-to-market

STAR ALLIANCE

jetBlue

Closed loop for specific customers or cargo

# International Launch instead of Domestic<sup>(1)</sup>

- Joby strategically tackling the hardest and most stringent market first to create comprehensive blueprint for future cities
- While Joby doesn't intend to launch internationally, there are many attractive markets
- Many civilian and defense opportunities globally
- Centralized government decision making in Middle East; Asia megacity demand



#### Strategic Interest in Accumulated IP(1)

- Before and after type certification we believe there is large strategic value to Joby's accumulated IP over 10 years in developing eVTOL aircrafts
- Similar to FDA drug approval; once approved, will attract interest





# \$2.0B in Capital De-Risks Path to Market

I Joby has significant run-way with capital provided in I

volatility impact

this transaction; de-risks downside capital markets

# Significant Cash Runway w/ \$2.0B PF Cash Positive Reflexivity Impacts Visibility to aid with regulators and customers Visibility to aid with regulators and customers Cash Cushion Through Target Roll-Out: Source Roll-Out: Positive Reflexivity Impacts Visibility to aid with regulators and customers Comfort from infrastructure development partners

Reinvent

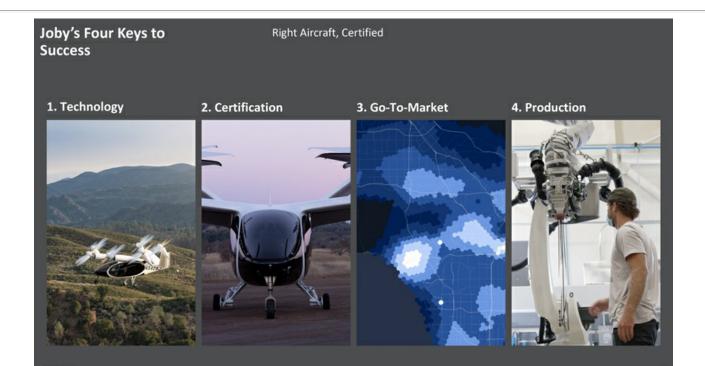
Assumes no redemptions
 Includes projected 2021 cash burn through VE 2004 (EBITDA less Cash)

52

Helps with public acceptance and "demand

pull" into new municipalities

#### **Key Risks & Mitigants**


| Risk                 | Mitigant                                                                                                                                                                                                                                                      |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Certification Delays | <ul> <li>Significant capital buffer with \$2.0B cash</li> <li>Ability to concurrently test and correct issues</li> <li>Line of sight to certification</li> </ul>                                                                                              |  |
| Mass Production      | <ul> <li>Deep expertise in aircraft production manufacturing both within Joby and in strategic partnership with Toyota</li> <li>Continued improvements in compositive mass manufacturing techniques</li> </ul>                                                |  |
| Local Regulations    | <ul> <li>Significant global TAM allows for Joby to quickly adapt go-to-market plans post certification</li> <li>Potential economic impact, strong consumer demand, and environmental benefits mitigate negative receptivity risk</li> </ul>                   |  |
| Competition          | <ul> <li>10+ years experience of R&amp;D with the only full-scale vehicle flying in the air</li> <li>Outstanding aircraft technology specs among competition</li> <li>Diligence suggests universal view of strong likelihood to be first to market</li> </ul> |  |

#### **Key Risks & Mitigants**

| Risk                                                       | Mitigant                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Consumer Demand & Willingness to Adopt                     | <ul> <li>Convenience, speed, and competitive per mile pricing will drive demand once consumers embrace new technology</li> <li>Certification and testing stats will give confidence on safety while hearing the aircraft in action will deliver acceptance of its noise footprint</li> <li>Urbanization and congestion trends will increasingly make alternative options look more and more attractive</li> </ul> |  |  |
| Federal Air Traffic Capacity                               | Joby's Design allows for integration into existing Air Traffic Control System with clear path to scale operations                                                                                                                                                                                                                                                                                                 |  |  |
| Aircraft Utilization & Economics Fail to Meet Expectations | <ul> <li>Joby aircraft can earn high ROICs and low payback periods from conservative utilization assumptions</li> <li>Model assumes pricing driven down to UberX cost; ability to use price to offset utilization shortfalls</li> </ul>                                                                                                                                                                           |  |  |
| Technology Fails to Achieve<br>Expectations                | <ul> <li>1,000+ flight tests to date with extensive testing over 10 years of component design and manufacture</li> <li>Full-scale vehicle, with airworthiness certification from US Air Force</li> </ul>                                                                                                                                                                                                          |  |  |

# Joby Vehicle Advantage:

Technology Certification Go-To-Market Production



These advancements are hard problems to solve, a product of Joby's 10+ years of R&D, and act as key differentiators to competition.

# **Key Technology Components** & Innovations

## Advanced Flight Control Software



- Advanced flight control software makes the aircraft simple for our pilots to operate and control
- · Fly-by-wire flight controls reduce pilot workload
- Automated 'envelope protection' mitigates pilot error by inhibiting commands that exceed safe operating limits
- Frees pilot to focus on the mission, situational awareness and rider experience

#### Electric Propulsion System



- Proprietary propulsion system developed over 10 years
- Distributing multiple smaller and simpler electric motors across the aircraft enables:
- <u>Safety</u>: no single points of failure across aircraft systems
- · Noise: electric motors are quiet
- <u>Economics</u>: reduced maintenance downtime; no expensive aviation fuels

#### Integrated Powertrain



- Motor design refined over 10 years of work
- Patented direct drive motor with integrated controls & inverter
- No commercial equivalent
- Manufacturing automation to support scale

#### Investing In Designing, Manufacturing, and Testing Inhouse

#### 10+ Years of In-house R&D





Production and testing done at our San Carlos facility





Production line prototyping underway

- Fast engineering iteration cycles
- · Gaining experience for mass manufacturing
- Higher control & success likelihood over the certification process

# Advanced Manufacturing Improves Unit Cost, Performance, and Weight





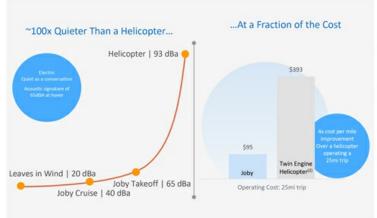
- · Reduction in materials and weight
- · Increases speed of manufacturing
- Subtractive backups to de risk certification
- Composite automation increases precision and speed with less waste
- 10x faster compared to human worker
- 500 labor hours per aircraft reduction
- Significant reduction in material
   waste

Joby Vehicle Advantage: Technology

# Stringent Testing Across All Components



Reinvent


Battery pack drop test

# Joby Aircraft versus Helicopter

#### **Step Change Beyond Existing Helicopter Technology**

#### Noise

- Low noise is critically important for community acceptance
- Allows skyport infrastructure to be conveniently located in close proximity to high-volume destinations
- The Joby aircraft is 100x quieter than a helicopter at takeoff<sup>(1)</sup>...
- ... and near silent in overhead flight



#### Cost (and speed)

- Fault-tolerant architecture and no single points of failure = lower maintenance costs and down times
- Top speed nearly 2x that of conventional helicopters = fixed and variable costs amortized costs over a greater number of passenger seat miles
- All-electric = lower fuel costs

Reinvent

(1) dBA is a logarithmic measurement, accordingly, a 3 dBA increase represents roughly a doubling in accustic intens (2) AscraftCostCulculator (Sixonsky 5-76C+) – Based on 120mph helicopter block speed

60

Joby Vehicle Advantage: Technology

# Joby Aircraft versus Helicopter

#### Safety

- Distributed electric propulsion rather than a centrally-located internal combustion engine, allows for a fault-tolerant overall architecture for the aircraft with high levels of redundancy
  - 6 propellors can fly safely with the loss of any one propellor
  - Each motor is redundant and powered by two separate inverters
  - Each inverter is wired to a separate battery pack
  - 4 isolated and redundant battery packs on board
- Motor continues to function if an inverter or pack fails
- Batteries in wing away from passengers
- · Long range battery pack allows for:
- More emergency options
- Able to fast charge
- Longer operating lifetime
- Mission flexibility
- · Aircraft has no single points of failure across aircraft systems
- Safety is a core value at Joby. Safety is not only a prerequisite for any commercial aviation operation, safety is the foundation that enables innovation and will always be key to Joby's success



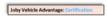
Joby Vehicle Advantage: Certification

# What Does a G-1 Certification Mean?



G-1 Certification creates alignment with the FAA on the set of rules that will ultimately determine certification

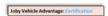
85% standard certification tests; 15% new (three things: fly-by-wire, vertical takeoff, batteries)


Moves from conceptual exercise with the regulator to a discrete set of tasks

- · Upon completion of tests and analysis, FAA issues certification approval
- · Can do concurrent testing; if one delays, you keep going with the others

Joby Vehicle Advantage: Certification

#### Paving the Certification Path Was Over a Decade of Hard Work...






# ... And Continues to Progress Well

#### Joby's Progress





#### Part 23 Certification Was a Conscious and Advantageous Choice

| 1 | Airplane<br>Part 23      | Part 23 provides flexibility and certainty                                                                                                                                                            |
|---|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - | Helicopter<br>Part 27/29 | <ul> <li>Pilots are widely available</li> <li>Use of existing aviation infrastructure</li> <li>Clear certification pathway</li> <li>Certification basis expidites transferability globally</li> </ul> |
|   | Special<br>Part 21.17(B) |                                                                                                                                                                                                       |

#### **Overview of Certification Path**

Key initial unlock is type certification: Joby already has signed G-1 agreement defining the discrete path to certification

#### Part 23 Type Design Certification

#### Purpose

Allows for the manufacture of aircraft meeting the approved design to be issued a standard airworthiness certificate in order to fly commercially in the National Airspace System. The G-1 defines Joby as a normal category piloted electric airplane that can also takeoff and land vertically

#### Process

- Joby comes to final agreement on tests that meet G-1 certification basis
  - · For Joby,
    - 85% traditional airplane requirements
    - 15% special conditions batteries, take off and land vertically, fulltime fly by wire
- Joby demonstrates that to the FAA through testing and analysis
- The FAA issues type certification
- · Joby aircraft eligible for commercial operations

#### **Benefits**

- Defining Joby as airplane allows access to 300k licensed airline pilots versus 30k pool of helicopter pilots
- pilots versus 30k pool of helicopter pilots
   Certification basis expedites transferability globally
- Joby is the first and currently only company to be approved on this path

#### Part 135 Operational Certification

#### Purpose

Part 135 certified air carries can conduct commercial operations

Process

- Standard process and largely paperwork
- Checklist includes items such as a drug testing program, prepare a manual regarding whether you will allow HAZMAT on board, and maintain a secure location for your aircraft
- Bonnie has managed similar process at JetBlue and has decades of experience

#### Benefits

· Provides low risk path and allows Joby to operate commercially

#### **Production Certification**

#### Purpose

A production certificate is an approval to manufacture FAA certified airplanes

#### Process

- Standard path for FAA to approve proposed manufacturing facilities
- FAA conducts a quality system audit to determine compliance with the applicable requirements. This audit evaluates the applicant's organization, production facility, quality system, and approved quality system and design data for compliance with applicable requirements.
- Notifies the applicant in writing of any corrective actions required
- Toyota partnership and expertise helps de-risk this process

#### Benefits

 Permits Joby to build out manufacturing footprint in multiple geographies including outside the U.S.

#### **World Class Certification Team**

#### FAA Part 23 Certification World Class Team

| Aircraft certified            | 25+ Aircrafts |
|-------------------------------|---------------|
| Aggregate years of experience | 1,400+ Years  |
| Team members                  | 100+ People   |



**Greg Bowles** 

Head of Government and Regulatory Affairs Former Co-Chairman of the FAA Part 23 Reorganization Aviation Rulemaking Committee

| Team Member Years of Expe | erience       | 00                                   |            |
|---------------------------|---------------|--------------------------------------|------------|
| Team Member               |               | 0000<br>0000<br>0000<br>0000<br>0000 |            |
| 0000                      |               |                                      | 0000       |
| 31+ years                 | 21 – 30 years | 10 – 20 years                        | < 10 years |

Joby Vehicle Advantage: Certification

# Line of Sight To Certification in 2023

G-1 paper lays out discrete steps remaining to achieve certification

+

These steps can be worked on in parallel so a delay in one area will not push back all other areas

+

Once all steps have been completed, FAA will issue certification for Joby's aircraft

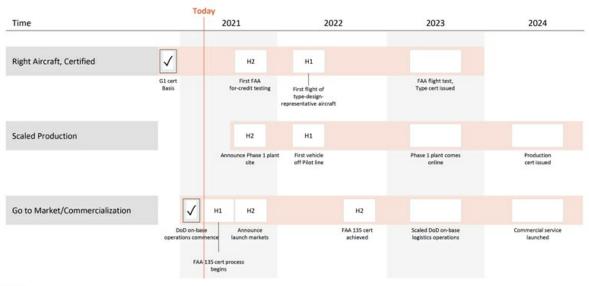
+

The funding from this transaction should more than cover the remaining financing required to achieve certification

=

Reinvent

Line of sight to certification in 2023




#### **Go-To-Market Unlock**

There are 5 key categories of unlocks that impact the manned UAM market, all of which are benefitting from positive tailwinds:

|                | Regulation                                                                                                                                    | Infrastructure                                                                                                                            | Technology                                                                                                                                                                 | Public Acceptance                                                                                                                                                                        | Customer Acquisition                                                                                        |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Key<br>Aspects | Airworthiness certification<br>for UAM vehicles     Integration of UAM into<br>airspace architecture     Pilot training and<br>certifications | Air traffic control integration     Skyports equipped with battery swapping or charging capabilities     Low-latency network connectivity | Electric propulsion (battery density, heat dissipation, charging, battery fire suppression)     Consumer platforms capable of facilitating multimodal mobility integration | Citizen concerns around noise, privacy, land use, and visual disruption Rider trust in safety of UAM vehicles                                                                            | Educate consumers and acquire customers     Embed Joby into typical commuting and traveling decision making |
| Trends         | Joby received G-1<br>certification which provides<br>clarity on remaining steps to<br>certification                                           | City and infrastructure<br>developer interest in Joby<br>and potential partnerships                                                       | Technology continues to<br>improve (e.g., battery<br>technology improvements)                                                                                              | Joby's performance in noise<br>and safety specs unlocks a<br>more seamless urban<br>integration     Convenience and<br>accessibility will provide<br>benefits to cities and<br>consumers | Uber partnership drives<br>simpler customer<br>acquisition and solves first /<br>last mile                  |

# Major Milestones: Certification, Production, and Commercialization



#### **Roll Out Strategy Overview**



#### One City

- Start in one city with a few aircrafts
- · Optionality for which city to start in
- Will use initial city roll-outs to develop full blueprint for following cities

#### A few cities

- Keep in 2-3 cities through 2025; then begin expansion
- Build and prove out density in initial cities to start benefitting from local network offects



#### Wide Urban Expansion

- Large number of target cities that align well to key criteria creates optionality at all stages
  of the rollout process and hedges against certain cities moving slowly through regulation or
  support
- Key criteria: population density, travel distances and congestion, per capita GDP, existing infrastructure, Airport O&D traffic, Fortune 1000 presence

Joby has optionality to decide on initial and subsequent roll out cities throughout its roll out, weighing aspects of viability, city support, and infrastructure development support to optimize goto-market

# Path to Increasing Density in Cities

Joby is expected to start as fixed routes (airport to fixed places w/ highest demand)  $\rightarrow$  interest in incremental nodes once consumer acceptance there  $\rightarrow$  potential in the future for this to be on demand versus scheduled service

#### **Infrastructure and Financing Partners**



REEF

RELATED



- At scale, skyport access should significantly impact real estate, similar to subway stops near housing or helipads on luxury apartment buildings
- Strong interest from real estate parties to develop private infrastructure; landlords and governments have already expressed interest in wanting Joby to come to them
- Traffic and environmental benefits provide incentives for city officials to want Joby in their city
- Recent partnerships with: REEF, Signature Aviation, Related, and Macquarie demonstrate real estate partner enthusiasm and provide a key competitive edge

#### **Node Density**



- · An aerial mobility network is nodal vs. the path-based nature of ground mobility
- Each new node added to the network adds connectivity to all the other nodes, whereas each new mile of road, rail, or tunnel only extends one single route by one mile
- In a nodal network, a linear increase in the number of nodes leads to an exponential increase in the number of connections
- This critical scaling feature is particularly powerful given increasing cost per mile of infrastructure development

#### Noise and Safety are the Two Key Unlocks to Drive Municipality and Consumer Adoption

#### **Municipalities and Consumers**





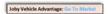




#### Noise

100x quieter than a helicopter means minimal disruption and annoyance. Allows for route expansion and operations in and out of new skyports that are nearer to where people want to live and work. Fits within existing noise restrictions and curfews

#### Safety


Rigorous FAA certification process should give confidence to municipalities. Restrictions and rules around the operation of skyports exist today

#### Municipalities

Work with target cities to explain benefits (environmental, traffic, cost, convenience, safety) and gain zoning approval and government support to roll out Joby in their city

#### Consumers

Start with high value, typically highly inconvenient routes at competitive prices to gain consumer intrigue



#### **Operations and Air Traffic Control**

| Aviation rules          | How we plan to operate  | Timeline     |
|-------------------------|-------------------------|--------------|
| Air Carrier Certificate | Joby FAA Part 135       | Mid 2022     |
| Pilots                  | Commercial level pilots | Exists today |
| Airspace                | Existing VFR/IFR Rules  | Exists today |

- Part 23 planes fit within existing ATC frameworks
- Joby's business model is powerful at 150-300 aircrafts, which fits within existing ATC capacity
- Importantly, there is precedent for ATC creating air corridors or lanes that Joby could use for more frequent operations within congested airspace
- Joby plans to start with VFR certification but anticipates moving quickly to IFR certification thereafter

#### **Vision for Customer Experience**

#### Press a button... get a flight



Step 1

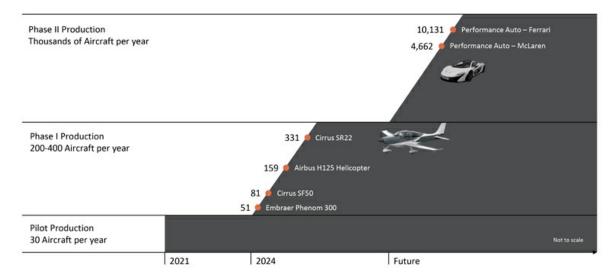
Select your destination through the Joby app or a partner app like Uber



Step 2

The Joby service will synthesize a trip for you, starting with a rideshare pickup to the nearest skyport




Step 3

At the origin skyport, board a shared Joby aircraft and fly to the destination skyport at up to 200 mph



Step 4

At the destination skyport, another rideshare car will be sequenced to meet you just as you arrive





## Joby Production Ramp Precedents



Designed for aerospace grade production, at automotive scale

| TESLA  | Electric vehicles with full vertical integration          |
|--------|-----------------------------------------------------------|
| Cessna | Light weight airplane production – current and historical |
| 0      | Carefully engineered mass production of vehicles          |
| SPACEX | Complex aerospace mass production                         |

## Joby Production Analogy: Tesla's Ramp to Mass Production



#### Joby Aircraft Designed from Outset to Manufacture at Scale with Aerospace Quality



#### **Early Production Start**

1k cars / year produced (2011)

#### Start + 5 years

51k cars / year produced (2016)

#### Start + 10 years

920k cars / year produced (2021)



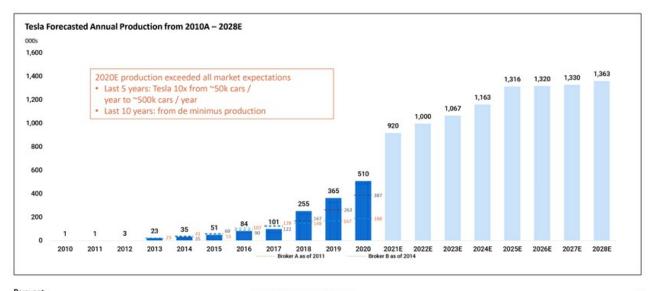
**Early Production Start** 

1-2 aircrafts / year produced (2020)

#### Start + 5 years

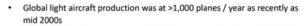
350 aircrafts / year produced (2025)

#### Start + 10 years


Thousands of aircrafts / year produced (2030)

Reinvent

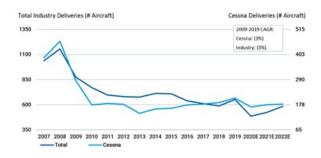
Source: Tesia public filing


## **Consistent Outperformance Relative to Production Expectations**

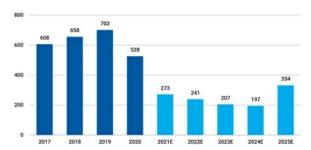




Reinvent Source HS forecasts (2216-2008), Broker Estimates 79


#### **Current Light Aircraft Production**

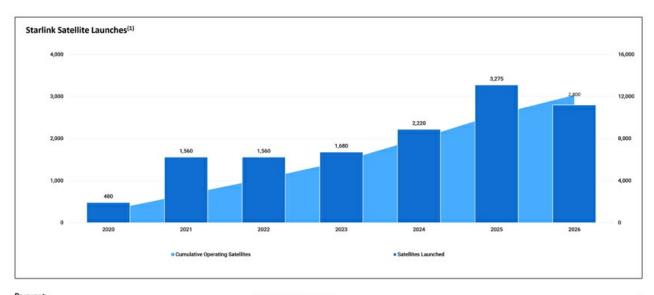





 At 1,000 aircrafts per year (roughly Joby's expected production in 2027), Joby has a powerful business model given their strong per aircraft unit economics and scale benefits starting to take hold

### Cessna Deliveries Declined Roughly in Line with the Market from 2009 – 2013 $^{\!(1)}$




#### Global Light Aircraft Historical and Scheduled Deliveries<sup>(2)</sup>



Reinvent (1) Jefferies admirates, Company data (2) Circum



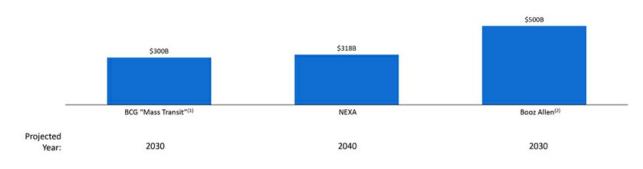
## Starlink Has Shown Ability to Quickly Scale Aerospace Grade Production



Reinvent (1)FCC Sings, Coven and Company estimates as

# Massive and Growing Market

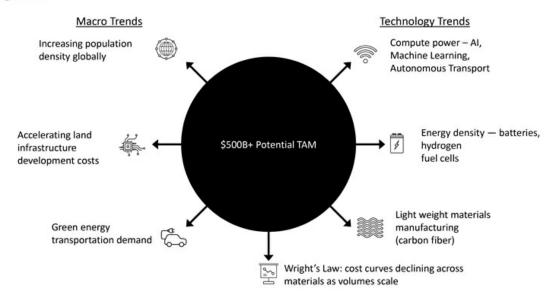
#### **Potential Use Cases**




#### Large TAM for UAM

Solving large problems  $\xrightarrow{}$  potential for immense shareholder value creation over the next decade

- · Joby long-term mission: save 1 billion people 1 hour a day
- \$500B+ potential market across applications
- Market is big enough for multiple winners across multiple modalities


#### Urban Air Mobility TAM Estimates Range from \$300B to \$500B+



Reinvent

Source:
(1) BCG: The Aerospace industry Isn't Ready for Flying Cars – Here's. What OEMs and Suppliers Must Do To Capitaliz (2) Booz Alian Hamilton Lithan Air Mobility Market Study – 11.21.18.

#### Megatrends Driving Growing TAM



#### Future Market Size

Market size increases as the technology and business model improve creating a virtuous cycle

Technology factors
 Business model factors
 Market factors



# Competitive Dynamics

## Competitive Aircraft Configurations

|              | Multicopter Thrusters only for lift, cruise via rotor pitch                                                                                    | Lift + Cruise (fixed wings) Independent thrusters used for cruise and for lift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vectored Thrust Thrusters used for lift and cruise                                                                        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                | Se de la constante de la const |                                                                                                                           |
| Benefits     | High redundancy Significantly quieter than helicopters but louder than other form factors Lower maintenance and lightweight                    | Redundancy benefits of multicopter without<br>collective or cyclic actuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Optimized for both hover and cruise     Lift provided by wings for cruise for highest efficiency     High cruising speeds |
| Implications | Slowest cruising speeds / least efficient More susceptible to adverse weather conditions Low occupancy Lower value proposition and market size | Suboptimal for hover or cruise     Lowest thrust-to-weight ratio decreasing efficiency     Low occupancy     Complexity of having two different propulsion systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Greater technical complexity                                                                                              |

## Each Airframe Configuration is Best Fit For a Specific Use Case

| Main airframe configurations   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Use Case                                                                  | Types of Trips                                                                 | Players       |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------|
| Multicopter                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Short-haul intracity                                                      | City aerial taxi:<br>From home to office<br>From train station to home         | ♥ VOLOCOPTER  |
| Lift + cruise<br>(Fixed wings) | STATE OF THE PARTY | Medium-haul intracity                                                     | Suburb-to-city aerial taxi:<br>From airport to city<br>From home to office     | wisk/         |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                | 37/ ARCHER    |
| Vectored<br>Thrust             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All of the above,<br>Improved efficiency for<br>both short and long trips | Full service aerial taxi:<br>Intra-city<br>Suburb-to-city<br>From city-to-city | Joby VERTICAL |

Reinvent

ource: Pitchbook, companies' websites, Reinvent Technology Partners analy

#### **Competitive Positioning**

With Over a Decade of Engineering and 1,000 Test Flights, Joby has Built the Leading Product and is Closest to Market

|                     | Conceptual<br>Design | Sub-scale<br>Prototype<br>Testing | Full-scale<br>Prototype<br>First Flight | Transition<br>from Vertical<br>to Wing-borne<br>flight (2) | Certification<br>Basis<br>Confirmed | Certification<br>Testing<br>Complete | Years of<br>Development | Commentary                                                                                                                                                             |
|---------------------|----------------------|-----------------------------------|-----------------------------------------|------------------------------------------------------------|-------------------------------------|--------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Joby                | ✓                    | 1                                 | 1                                       | 1                                                          | ✓                                   |                                      | 12                      | Leading product that is closest to market                                                                                                                              |
| wisk/               | ✓                    | ✓                                 | ✓                                       | ✓                                                          |                                     |                                      | 11                      | Shifting model from autonomous and recreational one-seater systems                                                                                                     |
| GHVNG               | ✓                    | ✓                                 | ✓                                       | n/a                                                        |                                     |                                      | 7                       | China-based with short urban trip focus. Autonomous focus makes regulatory path much more uncertain                                                                    |
| <b>♥</b> VOLOCOPTER | ✓                    | ✓                                 | 1                                       | n/a                                                        |                                     |                                      | 7                       | Short-range decreases probability of scaled roll-out. Limited customer value proposition at short range and autonomous focus makes regulatory path much more uncertain |
| + LILIUM            | ✓                    | <b>√</b> 03                       |                                         |                                                            |                                     |                                      | 6                       | European certification approach; plane architecture implies high energy usage at takeoff and landing                                                                   |
| 834                 | ✓                    | ✓                                 | ✓                                       |                                                            |                                     |                                      | 7                       | Focused on cargo and larger plane designs                                                                                                                              |
| VERTICAL            | ✓                    |                                   |                                         |                                                            |                                     |                                      | 5                       | British based focused on European market                                                                                                                               |
| =                   | ✓                    | ✓                                 |                                         |                                                            |                                     |                                      | 3                       | Shifted designs a few times, behind in R&D                                                                                                                             |
| MARCHER             | 1                    | ✓                                 |                                         |                                                            |                                     |                                      | 3                       | Minimal R&D experience and team of <150                                                                                                                                |

Reinvent

Source: Pitchbook, companies' websites, Reinvert Technology Partners analysis.

(1) Transition from vertical to wing-borne flight generally viewed as the most technically challenging aspect of flight envelope.

#### Joby is in Pole Position

01

world class team with world class partner

Team of 800+ with deep aerospace, software, and electrical engineering experience. 1000+ combined years of certification experience. World class partners supporting every step of the journey.

02

The right aircraft for the market

Zero operating emissions, 5 seats, 150 mile, 65dBA, designed to be certified and operated under existing regulations.

03

First mover advantage

1,000+ test flights completed. First and only eVTOL to sign G-1 with FAA. First to achieve US Air Force airworthiness. Being early drives strong network and scale effects.

U.

Vertically integrated approach

Key parts designed and produced in-house. Production scaling supported by Toyota. Recurring revenue from operating aircraft delivers compelling economics, compounded by scale.

05

ragmatic approach to commercialization

Uber integration and Elevate acquisition deliver deep customer insights and day 1 demand. Best-in-class infrastructure partners provide access to prime locations in key markets.

06

Strong financial foundation

Cash to support business through commercialization. Staged investment approach provides flexibility.



Pre-cert operations



Testing



**TOYOTA** 



**Uber** 





anding Infrastructure

Reinvent

## Key Business Drivers & Unit Economics

#### Overview of Joby's **Business Model**

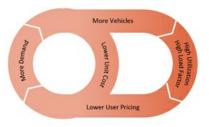
#### Compelling Unit Economics...

- Customers will book rides directly through the Joby app or a partner app like Uber
- Profitable per aircraft unit economics create a virtuous cycle where customer adoption benefits both the customer and Joby

#### ... Underpin Strong Business Model






Joby's local aerial ridesharing networks will also benefit from local network effects

 Vertically integrated business model ensures Joby isn't simply manufacturing aircraft for sale and receiving one-time revenues, but instead generating recurring revenues over the lifetime of the aircraft with corresponding benefits to contribution margin

Illustrative Market Route







## The Power of Vertical Integration

#### Vertical Integration is a Key Differentiator for Joby

- Fully-vertically integrated business model allows Joby to capture all of the economics created by first mover advantage and barriers to entry
- Operating ridesharing service rather than selling vehicles is important in retaining full economic control of value chain and leads to more recurring business model
- · Tight integration with the hardware drives safety
- When manufacturer runs the service, it incentivizes continued innovation for the consumer

#### Joby captures all the end-user value it creates



#### **Comparable Transportation Business Models**

#### Value Capture





Rideshare pricing has been a race to the bottom







Airlines' lack of vertical integration contribute to slim profitability (~5% profit margins)



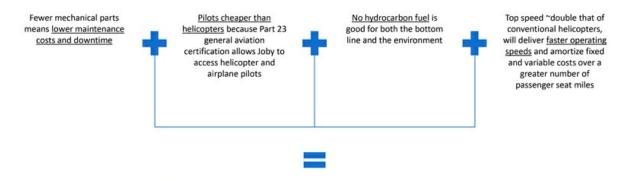


Railroads are vertically integrated and consolidated which has allowed them to capture meaningful economics (20+% profit margins)

Reinvent

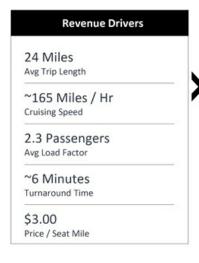
) https://www.neadyratios.com/sec/industry40/, Uber Financials: Ridesharing Gross Bookings / Ridesharing Trips

#### Why are Joby's Economics Much Better than Airlines?


#### **Joby Business Model**

- Joby's "fuel" costs are green, largely predictable, and comparatively cheap
- Vertical Integration, real estate partnerships, and digital first operation drive much more profitable per flight economics
- Competitive moat and first mover advantage should lead to a winner-take-most market dynamic

#### **Airline Business Model**


- Airlines don't make money through cycles because of fuel costs and variability
- High fixed and variable costs force airlines to fly negative margin flights
  - Airport fees, aircraft lease payments, and pilot / personnel salaries create a high fixed-cost base
- Competition leads to downward pricing pressure

#### Why is CASM so Low?



Enables end user pricing that existing aerial alternatives can't match

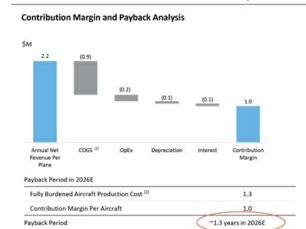
## Service Unit Economics at Scale in 2026



| 7      | Days a Week                     |
|--------|---------------------------------|
| ~40    | Avg Trips / Day                 |
| \$1.73 | Revenue per available seat mile |
| \$0.86 | Cost per available seat         |

| Per Aircraft (\$M)  |           |  |  |  |
|---------------------|-----------|--|--|--|
| Revenue             | \$2.2     |  |  |  |
| Cost of Goods Sold  | (\$0.9)   |  |  |  |
| Gross Margin        | \$1.3     |  |  |  |
| Other Expenses      | (\$0.3)   |  |  |  |
| Contribution Margin | \$1.0     |  |  |  |
| Payback Period      | 1.3 Years |  |  |  |

## Service Cost Unit Economics at Scale in 2026


| Cost Drivers Per available seat mile |                                                       |  |  |  |
|--------------------------------------|-------------------------------------------------------|--|--|--|
| ~22¢                                 | Pilot                                                 |  |  |  |
| ~19¢                                 | Maintenance Cost incl.<br>Labor                       |  |  |  |
| ~11¢                                 | Skyport Support /<br>Landing Fees                     |  |  |  |
| ~13¢                                 | Battery / Charging<br>(~30kW/Trip, 1Y<br>Replacement) |  |  |  |
| ~9¢                                  | Aircraft & Insurance                                  |  |  |  |
| ~12¢                                 | Other expenses                                        |  |  |  |

| 7      | Days a Week                     |
|--------|---------------------------------|
| ~40    | Avg Trips / Day                 |
| \$1.73 | Revenue per available seat mile |
| \$0.86 | Cost per available seat         |

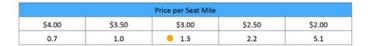
| Per Aircraft (\$M)  |           |  |  |  |
|---------------------|-----------|--|--|--|
| Revenue             | \$2.2     |  |  |  |
| Cost of Goods Sold  | (\$0.9)   |  |  |  |
| Gross Margin        | \$1.3     |  |  |  |
| Other Expenses      | (\$0.3)   |  |  |  |
| Contribution Margin | \$1.0     |  |  |  |
| Payback Period      | 1.3 Years |  |  |  |

## Attractive Unit Economics and Payback on Each Aircraft

#### Joby Service Unit Economics in 2026E



### Attractive Payback Period Across Varying Load and Aircraft Cost Assumptions


Years

|         | Passenger Load Factor         |                                                          |                                                                                     |                                                                                                 |  |
|---------|-------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| _       | 1.8                           | 2.3                                                      | 2.8                                                                                 | 3.3                                                                                             |  |
| \$0.9MM | 1.6                           | 0.9                                                      | 0.6                                                                                 | 0.5                                                                                             |  |
| \$1.3MM | 2.4                           | 1.3                                                      | 0.9                                                                                 | 0.7                                                                                             |  |
| \$1.5MM | 2.7                           | 1.5                                                      | 1.0                                                                                 | 0.8                                                                                             |  |
| \$1.8MM | 3.3                           | 1.8                                                      | 1.2                                                                                 | 0.9                                                                                             |  |
| \$2.1MM | 3.8                           | 2.1                                                      | 1.4                                                                                 | 1.1                                                                                             |  |
|         | \$1.3MM<br>\$1.5MM<br>\$1.8MM | \$0.9MM 1.6<br>\$1.3MM 2.4<br>\$1.5MM 2.7<br>\$1.8MM 3.3 | 1.8 2.3<br>\$0.9MM 1.6 0.9<br>\$1.3MM 2.4 1.3<br>\$1.5MM 2.7 1.5<br>\$1.8MM 3.3 1.8 | 1.8 2.3 2.8  \$0.9MM 1.6 0.9 0.6  \$1.3MM 2.4 1.3 0.9  \$1.5MM 2.7 1.5 1.0  \$1.8MM 3.3 1.8 1.2 |  |

Reinvent

(I) COGS includes maintenance costs, fully burdened pilot costs, landing fees, battery replacement costs, and fixet management and customer service staff cos (2) Inclusive of manufacturing costs only for 2026E as financing costs are built into contribution margin

#### Payback Period Sensitivity Analysis (Years)







Load Factor; 2.3 Cruise Speed: 165 mph
Price/Mille: \$3.00 Turn Time: 6 mins
Full Aircraft: \$1.3M

| Turnaround<br>Time | Cruising Speed (mph) |      |      |      |  |  |
|--------------------|----------------------|------|------|------|--|--|
|                    | 70                   | 110  | 150  | 190  |  |  |
| 5.0                | 6.7                  | 1.8  | 1.1  | 0.9  |  |  |
| 7.0                | 12.9                 | 2.4  | 1.5  | 1.1  |  |  |
| 9.0                | 68.4                 | 3.3  | 1.9  | 1.5  |  |  |
| 11.0               | n/a                  | 4.7  | 2.6  | 1.9  |  |  |
| 15.0               | n/a                  | 16.7 | 5.3  | 3.5  |  |  |
| 20.0               | n/a                  | n/a  | 72.2 | 13.0 |  |  |



| Fully Burdened Aircraft Cost |        |        |        |        |        |        |  |  |  |
|------------------------------|--------|--------|--------|--------|--------|--------|--|--|--|
| \$0.9M                       | \$1.1M | \$1.3M | \$1.5M | \$1.8M | \$2.1M | \$2.3M |  |  |  |
| 0.9                          | 1.1    | 9 1.3  | 1.5    | 1.8    | 2.1    | 2.3    |  |  |  |

Oby 2026 estimate

Reinvent

te. Mutually exclusive calculations should not be merge

#### **Market Economics**

Indicative Market Returns

20 node network

300+
aircraft in fleet

> \$500M annual revenue

> \$225M service contribution margin



# Transaction Context

#### Transaction Terms Overview

#### **Transaction Structure**

- Joby and Reinvent are in discussion to combine in order to grow the industry leading aerial ridesharing business as a public company and achieve commercialization for its eVTOL aircraft by 2024
- Restructured founder shares and private warrants to create long-term alignment

#### Valuation

- Transaction implies a fully diluted pro forma aggregate value of \$4.6Bn (2.3x AV / 2026E Revenue)
- Existing Joby shareholders to roll 100% of their equity and expected to receive approximately 75% of the pro forma equity<sup>(1)(2)</sup>

#### **Capital Structure**

- The transaction will be funded by a combination of Reinvent cash held in a trust account and proceeds from Reinvent PIPE for an aggregate of up to \$1.68n(III2)
- Pro forma for the transaction, Joby expects to have up to \$2.0Bn(1)[2] of cash to fund growth and commercialize its operations

Notes:

(1) Pro-forms ownership based on \$10.00 per share price and excludes potential dilution from out of the-money Reinvent warrants and out-of-of-the-money founder shares. Pro-forms further assumes no redemptions by Reinvents existing public shareholders

(2) Committed Funding is inclusive of an \$835MM fully committed PIPE and a \$75MM Uber convertible note which converts immediately prior to transaction closing, the 7.5MM shares be issued to Uber are excluded from the Equity Consideration to Joby's Existing Investors.

#### DeSPAC Structure Aligns Interests for Long-Term

- Reid Hoffman to join board of directors at de-SPAC for three-year term followed by a consecutive three-year term by Michael Thompson
- ✓ Up to five-year lock-up on Reinvent shares
- ✓ Price-based vesting triggers of \$12, \$18, \$24, \$32 and \$50 per share on founder shares
- Senior Joby management and material existing investors subject to lock-up arrangements substantially similar to the founder shares
- √ \$100MM+ investment in PIPE from Reinvent branded investment vehicles

Strong Alignment for Joby and Reinvent to Drive Significant Long-Term Value for Shareholders

#### **Joby Investor Base**

#### **Existing Investors**

#### **Select PIPE Investors**











THE BAUPOST GROUP

Fidelity Management & Research LLC

edbi







Funds and accounts managed by BlackRock









High quality financial and strategic investors deploying a mix of growth-oriented and value-oriented strategies

Reinvent

Joby Investor Base Existing Investors Select PIPE Investors Fidelity Management & Research LLC Funds and accounts managed by BlackRock High quality financial and strategic investors deploying a mix of growth-oriented and value-oriented strategies

## Financial Overview

## Joby Base Case Model & Drivers

|                                             | 2021E | 2022E | 2023E | 2024E | 2025E | 2026E |
|---------------------------------------------|-------|-------|-------|-------|-------|-------|
| Income Statement Items                      |       |       |       |       |       |       |
| Total Revenue                               |       |       |       | 131   | 721   | 2,050 |
| Growth(%)                                   |       |       |       |       | 450%  | 185%  |
| Recurring Aircraft Revenue <sup>(3)</sup>   |       |       |       |       | 186   | 796   |
| New Aircraft Revenue                        | 876   |       | 61    | 131   | 535   | 1,254 |
| Recurring Aircraft Revenue Contribution (%) |       |       |       |       | 26%   | 39%   |
| (-) Cost of Goods Sold <sup>(2)</sup>       | •     |       | 1.5   | 55    | 304   | 867   |
| Gross Profit                                |       |       |       | 76    | 417   | 1,183 |
| Gross Profit Margin(%)                      |       |       |       | 58%   | 58%   | 58%   |
| Adjusted EBITDA <sup>(3)</sup>              | (151) | (190) | (165) | (69)  | 185   | 824   |
| Adjusted EBITDA Margin(%) <sup>(3)</sup>    |       |       |       |       | 26%   | 40%   |
| Total Capex                                 | 58    | 68    | 166   | 552   | 903   | 1,444 |
| Depreciation & Amortization                 | 3     | 7     | 19    | 47    | 113   | 219   |
| Assumptions                                 |       |       |       |       |       |       |
| Revenue Generating Aircraft (Average)       | 2     | 7     | 26    | 141   | 413   | 963   |
| Number of Cities                            |       |       | 100   | 1     | 2     | 3     |

Reinvent

Recurring Anzelf Revenue = Prior Year Average Anzelf \*Carriert Year Revenue per Anzelf, July Service segment only

COSS includes plot costs, maintenance fails and early and costs. Are transagement and coststere service sized foots, and blastery replacement costs.

Adjusted ESTEA's a non-DAAP financial metric defined by us as net loss or gain before interest expense, provision for income taxes, depreciation and amortization expense, and of taxed compressation and costs.

### Management Case – Per Aircraft Unit Economics

#### Key Assumptions and Performance Indicators in 2026 - Joby Service

#### Aircraft

- · Average of 963 total aircraft (850 in Service segment)
- · Fully loaded manufacturing cost of \$1.3MM per aircraft
- Average useful life of ~50k flight hours which equates to over 15 years

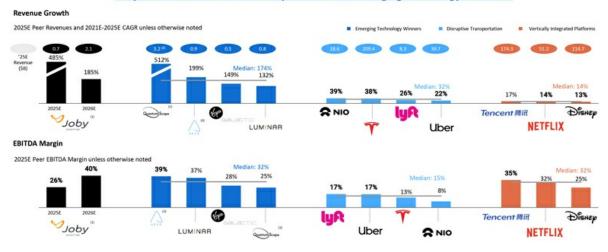
#### Aircraft

- ~7 hours spent in flight per day with ~12 operating hours (1)
- ~12.4MM total flights per year with ~35.4k flights per day
- Average trip length of 26 miles
- Load factor of 2.3 passengers per trip

#### **Bottoms-Up Cost Analysis**

- Fully loaded annual COGS, operating expense, depreciation, and interest of \$1.2MM per aircraft
  - COGS includes pilots, landing fees, customer service, and maintenance
  - Operating expenses includes SG&A
- Fully burdened CASM of \$0.86 (2)

#### Revenue & Payback


- Net revenue of \$2.2MM and \$1.0MM annual profit per aircraft
- Based on \$1.3MM cost, payback period of ~1.3 years
- Price point of \$3.00 per seat mile (\$1.73 RASM at full load factor) is cheaper than Uber Black for an individual

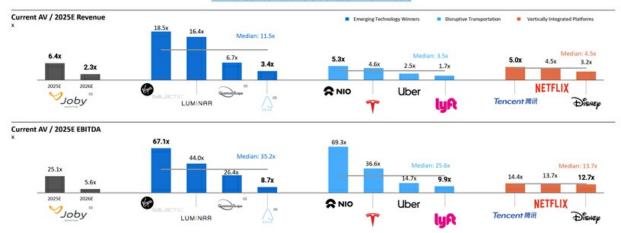
Reinvent

Notes: (1)Assumes 14 operating hours per weekday and 8 operating hours per weekend day (2)CASM = (COGS plus operating expense plus depreciation) / Total Available Seat Miles of 1,188Mbl

## Vertically Integrated Model Will Provide for Strong Growth and Margins

#### Joby Boasts Substantial Scale of up to ~4x Other Emerging Technology Winners...




Social: Will Steed research commans as or Subsidy 20, 2011; Visited Instanctions

11 July Revenue growth shows year over year to 2015 at 2015 at 2015 at 2015 at 2015 required (BITCA) is a non-GAP foundable to 10 July Revenue and Applicated (BITCA) margin as of 2015 and 2025 required (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Revenue and Application (BITCA) is a non-GAP foundable to 10 July Reve

Reinvent

#### Joby Valuation Consistent with High Growth, Disruptive Companies

#### ...And Conservative on a Cash Flow Basis



obstore area order research commiss as of alloway or, 0,217, Wiveour resemblations (1) Assumes profession aggregate value of 540 file. Adjusted SIGTIXA is a non-GAAP financial metric defined by us as nel loss or gain before interest expense, pro-ission for income tas depreciation and amortization septeme, and stock based compensation. (2) Based on 2020 estimates

Reinvent

#### Long-Term Valuation Potential Relative to Autonomous Peers

Cash Flows Support Attractive Entry Point for Investors

Present Value of Future Aggregate Value at an Illustrative 20% Discount Rate

- Applies a 25-30x AV / EBITDA multiple range to Joby's 2026E EBITDA to arrive at an Implied Future Aggregate Value
- The applied multiple range is representative of the long-term valuation of premier vertically integrated platforms
- Implied Future Aggregate Value is discounted 4.75 years back at an illustrative 20% rate to arrive at an Implied Current Aggregate Value

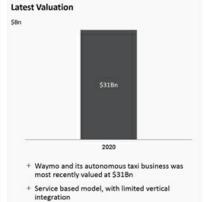
#### **Discounted Aggregate Value Analysis**



Significant potential for continued value creation as market matures and Joby rolls out to additional cities

Reinvent

1) Adjusted EBITDA is a non-GAAP financial metric defined by us as net loss or gain before interest expense, provision for income taxes, depreciation and amortization expense, and the contraction of the


## Analogous Autonomous and Ridesharing Precedents

#### cruise









+ Low margins given expectation for continued aggressive growth

112

Reinvent Source, Provident