Filed by Reinvent Technology Partners Pursuant to Rule 425 under the Securities Act of 1933 and deemed filed pursuant to Rule 14a-12 of the Securities Exchange Act of 1934 Subject Company: Joby Aviation Commission File No. 001-39524

Disclaimer

This presentation (this "Presentation") was prepared by Reinvent Technology Partness ("RIP") and Joby Arts, Inc. ("Joby") in connection with their proposed business combination. By accepting this Presentation, you agree to use this Presentation for the sole purpose of evaluating the potential transaction. Any reproduction of distribution of proposed by the presentation of the sole purpose of evaluating the potential transaction. Any reproduction or distribution of the proposed by the presentation of the proposed by the p

NO REPENDIATIONS AND WARRANTES This Presentation is not intended to from the basis of any investment decision by you and does not contribute investment, tak or legal advice. No representation or warranty, assesses or inplice), and will be given by Part for Joby or any of the respective affiliates, directors, officenc, employees or advisors or any other persons as to the accuracy or completeness of this distinguishes that Theorement of the employee of the communication to transmitted or otherwise meak available to any parts in the course of the situation of the proposed transaction on any employee the implicit of the accuracy of the employee, and the employee or advisors are associated to any employee or advisors of the employee or advisors of the course of the situation of the proposed transaction on any employee in advisors of the accuracy of the implication or the employee or advisors of the employee or advisors of the advisor of the employee or advisors of the advisors of

Indicators data, and a such trages are the matrix. If the data benchmark grade grade that the information contained in this framestation is prediminary in shure and is adjusted to data, and an such trages are the matrix. If the data benchmark grade the information contained in this framestation is prediminary in shure and is data. The data such trages are the matrix if the data benchmark grade that is the matrix if the data benchmark and is adjusted to data, and an such trages are the matrix if the data benchmark grade that is the matrix if the data benchmark and is data. The data such trages are the data such that the matrix if the data such and the data benchmark and the such and

TRACEMENT and agrins to the trademarks, recovering the generation of the interference in the interference in the interference interfere

AUXIONSTRY AND MARKET DATA This Presentation contains startisticate, estimates and threcasts provided by joby and/or are based on independent industry publications or other publicy available information, and with information based on XMy's iterand sources. This information involves many assumptions and limitations and you are customer not to give undependent publications and other publicy available information. Accordingly, relitive RTP nor lody on any of their affiliates and advisors makes any representations as to be accuracy or publications and other publicy available information. Accordingly, relitive RTP nor lody on any of their affiliates and advisors makes any representations as to be accuracy or completeness of these data.

Reinvent

ENANCIAL INFORMATION AND NON-GARP MEDIUMS. This Presentation contrain certain estimate parterinary francial results and key aperating meetrs. This Information is preliminary and subject to change. As such, the estual and not a substate to or superitor in measures of fanceing arthmetic presentation because control APP fanceing in estimates to a sub-trol not a substate to or superitor in measures of fanceing arthmetic presentation because of the compared and as a sub-trol not a substate to a substate of the compared in the control of the compared and as a substates of the compared and measures different in tocordance with GARP. Other comparison may calculate non-GARP measures differently, or may use other measures to calculate the family topic measures different hey his model. The measures may not directly compared to a substate of the compared and as calculate the family topic measures and the compared and as calculate the family topic measures and the compared and as calculate the family topic measures and the compared and th

Indexests out four events UCI of PROJECTION This Presentation also contain contain certain francial presasts. These projections are for Blutrathe purposes only and should not be relied upon as being necessarily indicates of than a result. The subject the subject may be an event of the subject to a subject of the subject may be an event of the subject to a subject of the subject may be an event of the subject to a subject of the subject may be an event of the subject to a subject of the subject material information over the subject to a subject of the subject material information over the subject to a subject of the subject material information information information over the subject to a subject of the subject material information information information information of the subject material information i

MPORTANT INIONALTION FOR INVISIONS AND SIGOROPLIQHS TRADBILL, and the second s

Investors and security holders will be able to obtain free copies of the registration statement, the proxy statement/prospectus and all oth be filed with the SEC by RTP through the website maintained by the SEC at www.sec.gov.

The documents filed by RTP with the SEC also may be obtained free of charge at RTP's website at https://www.reinventtechnologypartners.com or upon written request to 215 Park Avenue, Floor 11 New York, NY.

ARTICIDANTS IN THE SOLICIATION RTP and Joys will their respective directors and executive officers may be deemed to be participants in the solicitation of proxies from RTP's shareholders in connection with the proposed transaction. If all of the areas of the directors and executive officers of RTP and Information regarding their interests in the backness combination will be contained in the proxy literament/prospectus when available. You may obtain the copies of these documents as described in the proceeding paragraph.

Reinvent

Reid Hoffman • Co-lead Director of RTP • Partner at Greylock

 Partner at Greylock
 Board Member at Microsoft
 Founder of LinkedIn and foundin member of PayPal

Mark Pincus • Co-lead Director of RTP • Founder and Chairman of Zynga • Founder of Tribe.net, Support.com, and retexader

Michael Thompson - CEO, CFOA Director of MTP - Sounder and Portfolio Manager of C capital - Advoor and board member to several companies

David Cohen

 Secretary of RTP
 Previously Associate General Counsel at Zynga and Senior Counsel at Proskauer

Daniel Urdaneta

Investment Partner at Reinvent Capital
 Previously Investor at ValueAct and
 Warburg Pincus

Matt DeGraw

Principal at Reinvent Capital
 Previously Investor at Francisco Partner

Reinventing Mobility: Joby

Reinvent

Reinvent goal: to partner with amazing founders with game changing technologies who are inventing or reinventing industries

Experience as entrepreneurs, operators, investors, and public company board members helping drive execution and strategy

Structurally committed to long-term partnership with Joby and alignment with investors through price and time-based vesting up to 5 years

Joby offers opportunity for Venture Capital @Scale

Reinvent vision for Joby: Uber meets Tesla in the air

World class team and leading technology in pole position to be first to certification and commercialization

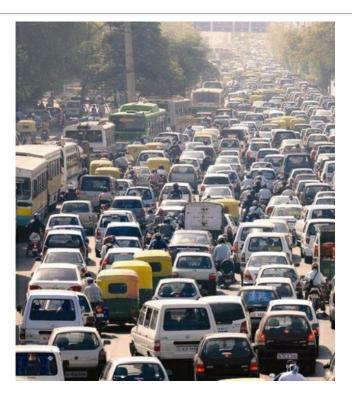
Transaction provides funding to help get through certification and first stages of commercialization

Joby Has a Highly Attractive and Scalable **Business Model**

Attractive Unit Economics...

...Lead to a Scalable Financial Profile

nance costs, Mily burdened pilot costs, landing tees, tuttery replacement costs, and fired management and ring costs with 2025E as financing costs are sub-title title costshubuter mergin costs, manneautor tablo and parts costs, field management and customer service tabl' costs, and battery regi-costs, manneautor tablo and parts costs, field management and customer service table.


Table of Contents		
	The Time is Now	8
	Historical Context	19
	Executive Investment Summary	26
	Joby Vehicle Advantage: Technology Certification Go-To-Market Production	55 57 62 69 76
	Massive and Growing Market	82
	Competitive Dynamics	87
	Key Business Drivers & Unit Economics	92
	Transaction Context	103
	Financial Overview	107
Reinvent		7

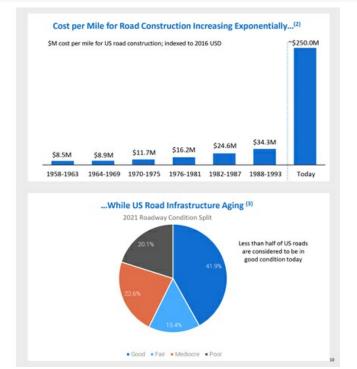
The Time is Now

Congestion is a Problem

Secular trends: urbanization causing congestion, greater emissions; cost of infrastructure increasing in cities; increases in traffic causing large economic losses

- Congestion is bad ... and getting worse
- Population growth, urbanization, and underfunded infrastructure are key contributors
- · Ridesharing and delivery increasing ground traffic
- LA traffic has increased 80% since 1990
- 4.6B/yr hours wasted in traffic in top 15 U.S. metros alone⁽¹⁾
- 29% of CO2 emissions attributable to transportation sector in U.S. (1)
- 70% of global population will be living in cities by 2050⁽¹⁾

Reinvent (1) Joby Analyst


Road Infrastructure Costs are Unmanageable

 Need for new solutions. Road infrastructure cost increasing dramatically driven by labor, land, permitting,

 Estimated impact of congestion on US trucking industry: \$28B per year⁽¹⁾ – represents dead-weight cost passed

and materials cost inflation

to consumers

Reinvent

i mpis nivwo amba organoutrayi i mpis nivwo konolings eduiv-pointeri lupitada/2019/07/2019-07-12, jimfastivuture_costs_v2 pdf i) Data from TRP' a National Transportation Research Noeprofit (http://www.sodigest.com/ontarget/21-03 ASCE: States US: Roads adv/adv/drt18/30)

Time Lost in Traffic

- Texas A&M estimates that time lost in traffic cost Americans $^{\rm +}$180$ billion in 2017 and is forecasting that number to rise to $^{\rm +}$237$ billion by 2025
- Problem just as acute in emerging market countries that are quickly

urbanizing and industrializing

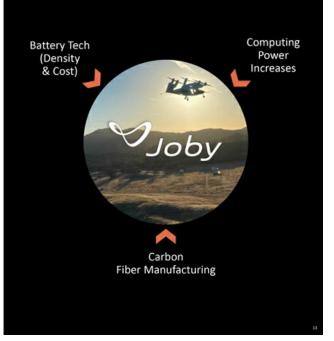
2017 CONGESTION RANK	URBAN AREA	HOURS LOST IN CONGESTION PER AUTO COMMUTER	EXCESS FUEL PER AUTO COMMUTER (GALLONS)	COST PER DRIVER
1	Los Angeles-Long Beach-Anaheim CA	119	35	\$2,676
2	San Francisco-Oakland CA	103	39	\$2,619
3	Washington DC-VA-MD	102	38	\$2,015
4	New York-Newark NY-NJ-CT	92	38	\$1,947
5	Boston MA-NH-RI	80	31	\$1,580
6	Seattle WA	78	31	\$1,541
7	Atlanta GA	77	31	\$1,653
8	Houston TX	75	31	\$1,508
9	Chicago IL-IN	73	30	\$1,431
10	Miami FL	69	34	\$1,412

11

Reinvent

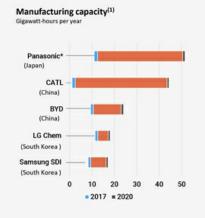
Source: Texas A&M 2019 Urban Mobility Report

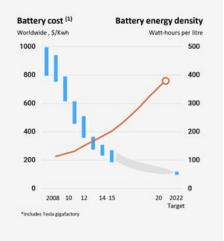
The Time is Now


For almost 100 years, we have expected "flying cars" / "flying taxis"... what makes now the right time?

12

Why Now?

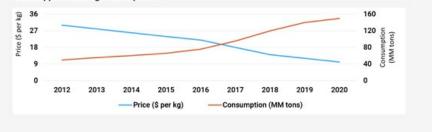

- The idea of eVTOL has been around for decades...
- JoeBen himself has been thinking about how to create a viable eVTOL aircraft since the early 1990s
- Only recently have <u>enabling technology</u> <u>improvements</u> made it possible to build an eVTOL aircraft with range, speed, noise, payload, and safety profiles to reliably deliver solutions for consumers and companies



Rapid Improvements in Battery Technology

Electric motors are quieter than combustion engines, but low battery density historically limited the application of electric motors in aviation. Battery evolution is enabling the practical use of electric motors in aircraft as increased battery density is increasing range and payload of electric powered aircraft. The shift to electric motors plus improvements in rotor design paved the way for quieter aircraft.

- Improvement in energy density and decrease in \$/kWh for the first time enable range, speed, and payload to address customer use cases
- Enough high-quality battery manufacturing capacity to allow Joby to scale
- Current energy density delivers performance required to operate medium-range eVTOL flights
- Continued focus, investment, and commercialization of battery technology, especially from car EV companies, will drive further battery improvements
- Tesla expects to have >100 gigafactories by 2040
- Battery density has historically, and is expected to continue to, improve at ~5% p.a.

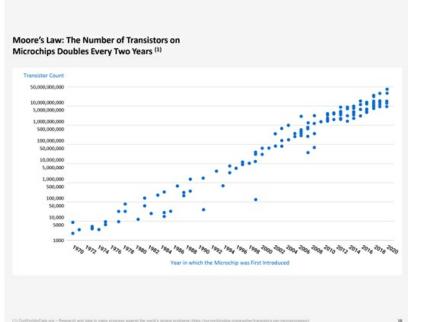

Carbon Fiber Tech Advancing and Manufacturing Capabilities Scaling

- As a metal replacement, carbon fiber composites offer 10 times the strength of steel at half the weight
- Increasing demand for carbon fiber has led to technology advancements in manufacturing speed and volumes
- Such manufacturing advancements have driven cost improvements, expanding the demand for and application of carbon fiber

Carbon Fiber Demand, Metric Tons (1)

Total	98,000	123,300	191,350
Sports/Leisure	12,000	13,800	19,000
Industrial	68,000	85,000	142,350
Aerospace	18,000	24,500	30,000
End market	2017	2020 (est.)	2025 (est.)

Falling Carbon Fiber Prices Due to Lower Manufacturing Costs Have Supported Rising Consumption ⁽²⁾


Reinvent

Composites World (https://www.compositesworld.com/articles/the-making-of-carbon-fiber)
 Infosys (https://www.infosys.com/engineering-services/white-papers/documents/carbon-composites-cost-effective.pdf)

Continuous Improvements in Localized Compute Power

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers

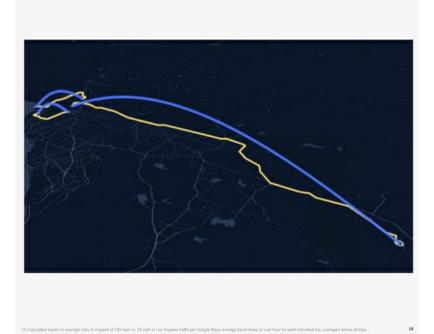
- Improvements in the last thirty years of compute power and other geospatial technologies (GPS) have allowed for planes to integrate and design around onboard technologies
- Joby software system powered by on-board compute adjusts flight mechanics in real time in safe and redundant way
- E.g., automatic shift from vertical to horizontal flight profiles in all conditions

Shift Toward Sustainable Mobility and Electrification of Transportation

Electrification of the grid and reducing operating emissions are key components in the fight against climate change

- Sustainable mobility has never been more needed given the threat that climate change poses to our communities and planet. According to the U.S. Environmental Protection Agency (EPA), the top source of CO2 emissions in the U.S. is the transportation sector
- Improvements in batteries and power electronics alongside the ever-increasing performance of microelectronics have enabled the development and deployment of new sustainable energy and transportation solutions
- By extending electrification of transportation to the skies and through zero operating emissions, Joby can make a meaningful contribution to tackling the dual challenges of congestion and climate change

Aerial Ridesharing Unlocks the Third Dimension of Urban Transportation


Sustainable

All-electric aircraft, zero operating emissions

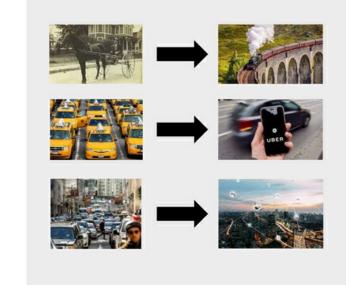
Fast 5X faster than driving in major metros⁽¹⁾

Scalable

Exponential scaling of routes at a fraction of the infrastructure cost

Historical Context

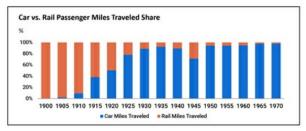
Silicon Valley Retrenches to Capital Light

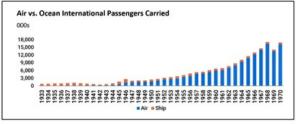

- Over the last 20 years, Silicon Valley has retrenched into capital-light / asset-light business models
- Enabling technologies have allowed IT business models to scale with increasingly small amounts of upfront capital, with increasingly high incremental margins. Capital has chased high ROIC investment opportunities
- As a result, capital shifted away from funding longerpayback hard technology problems

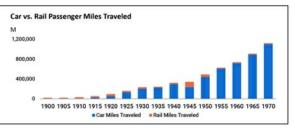
Consumer Behavior Adapts Quickly to New Transportation Modalities

Humans have Consistently Underestimated How Quickly Transportation Modalities Change

- No one in the early 1800s would have expected to be able to move around the country in railroads; similarly in 1900 with cars
- We expect eVTOL may be one of the next unlocks in transformative transportation modalities
 - Having a piloted service will aid with consumer acceptance
 - Infrastructure both adapts to and helps fuel more demand
 - Future of transportation is not as far off as we expect




A New Kind of TAM: Expanding the Pie


Radical changes to transportation modality don't so much 'cannibalize' the current/prevailing form of transport as much as totally re-invent and re-scale the size of the market itself, frequently by orders of magnitude

New Travel Capabilities Offered by eVTOLs Could Unlock Revenue Opportunities That are Not Possible Today

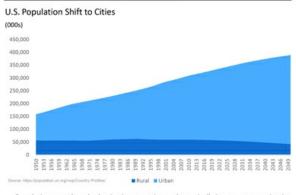
22

Reinvent

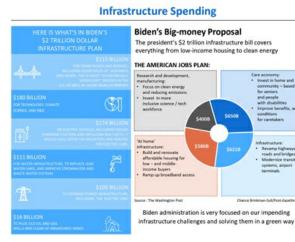
iource: US Census Bureau

U.S. DoD Advances Leading to Civilian Adoption

U.S. DoD often leads the civilian approval and development of key aerospace technologies such as: jet engines, satellites, GPS, drones, and radar


0 Joby

Joby's U.S. Department of Defense contract is a key advantage as it allows for advanced product testing in real settings, qualitatively helps with certification, and accelerates civilian acceptance and trust


23

Macro Trends - World Should Look Completely Different in 2030

Urbanization

Population growth and urbanization are going to dramatically increase congestion in cities and the need for increased transportation capacity

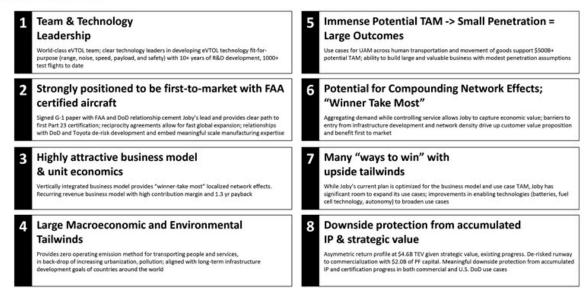
Macro Trends - World Should Look Completely Different in 2030 (cont'd)

Expanding ground-based networks to address congestion and move people cost-effectively through cities has become increasingly difficult, if not impossible

Cost Per Mile of Infrastructure Spending

Light Rail Lines ~\$100M / mile (1) Four-lane freeway ~\$20M / mile (2) Subway ~\$600M / mile (3) Joby Minimal \$ / mile Joby infrastructure costs limited to skyports and charging stations. Demand for service may drive incremental opportunity for real estate partners (offices, apartment buildings, etc.) to fund development costs

25


Cities need a new, sustainable mobility solution to address their increasing density and populations. The magnitude of this problem is so large that there will likely need to be winners across multiple form factors.

Reinvent

ompassinternational net/order-magnitude-road-high-vay-costs/ vvv-marketplace.org/2018/04/11/sub-vays-us-expensive-cost-comparison/

Executive Investment Summary

Reinvent Investment Thesis

Team & Technology Leadership

World-class Team

Visionary Leadership with 20+ **Years Experience**

Paul Sciarra Executive Chairman

JoeBen Bevirt CEO, Chief Architect, Co-founder

Deep consumer technology 30+ year goal of scaling eVTOL experience as Pinterest Co-founder; involved with Joby since 2014

30+ year goal of scaling eVTOL since college; 12 years as founder of Joby working on hundreds of iterations to create the Joby eVTOL that exists today; Proven leader and developer of a successful business with Joby/Gorillapod

Responsible for battery program for Tesla Model S & X; expert in battery powertrain technology

Greg Bowles Head of Government & Regulatory Affairs Didder Programs & Systems Engineering

Bonny Simi

esident & Founder of JetBlue Technology Ventures; built pilot training program at Blue; deep experience in ops & safety

Matt Field

Joe Brennan

Key engineer for Boeing Dreamliner, one of largest scale erospace carbon fiber programs

R&D subsidy

Dedicating large resources towards production design and execution

Go-to-market and demand

aggregation partnership

Joby is the first company developing a comparable aircraft to have received airworthiness approval from the U.S. Air Force

Near-term DoD deployments and

Reinvent

Jon Wagner Head of P

World-class

Eric Allison

Next to JoeBen, among the most experienced eVTOL experts as former head of Uber Elevate; former CEO of Zee; PhD in

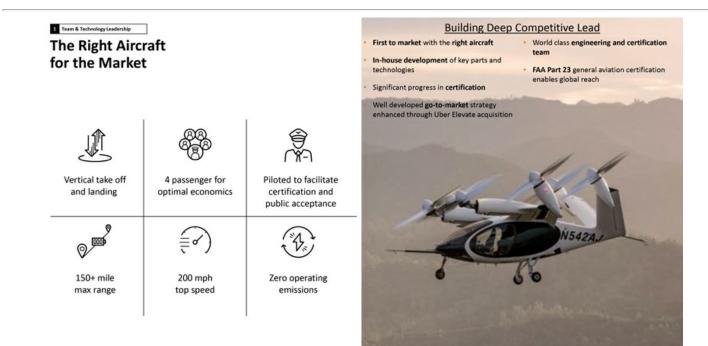
At

Functional Experts

Former Co-Chairman of the Former VP of Aviation Systems Former CFO of Ford North FAA Part 23 Beorganization and over 15 years of experience America; prior to Ford, Aviation Hieransing at Caldman Sachar Committee; deep committee; deep government and regulatory bodies Stateman Sachar Sachar

CFO

*


Key Partnerships

ΤΟΥΟΤΑ

Uber

x.

De-Risk Path to Market

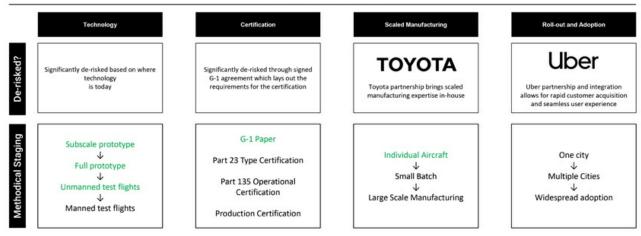
Team & Technology Leadership Clear Technology Leader

Joby's Leadership Position is Supported by a Wide Consensus of Participants and Experts

"When comparing current air taxi providers more holistically, we identified Joby Aviation as the most promising air taxi startup at this point. Not only has the U.S.-based startup raised massive amounts of venture capital needed to develop the necessary technology stack, but it has also built a high-quality patent portfolio. In fact, Joby Aviation possesses one of the most important patents in the air taxi space of all (measured by Competitive ImpactTM), which relates to aerial vehicle design and noise reduction technology. The latter appears to be of utmost importance to achieve public acceptance." – Lufthansa Innovation Hub, "Are Air Taxis Ready For Prime Time, A Data-Driven Report on the State of Air Taxis in 2021"

Joby is the highest ranked Advanced Air Mobility (AAM) company by a comfortable margin in SMG Consulting's AAM Reality Index

AAM REALITY INDEX®


OEM		ARI	Use Case	Vehicle Type	Propulsion	Operation	Vehicle	First Flight	66	Country
Joby Avlation		7.9	Air Taxi	Vectored Thrust	Electric	Piloted	84	2019	2024	USA
Beta Technologies	**	7.5	Cargo/Air Taxi	Lift + Cruise	Electric	Piloted	Alia 5250	2020	2024	USA
Wisk	+	7.5	Air Taxi	Lift + Cruise	Electric	Autonomous	Cora	2018	-	USA
Ehang	4	7.4	Air Taxi	Multicopter	Electric	Autonomous	216	2019	2021	China
Archer Aviation	4	6.9	Air Tasi	Vectored Thrust	Electric	Plioted	Maker	2021	2024	USA
Hyundai	**	6.7	Air Tasi	Vectored Thrust	Electric	Ploted	5-A1	2025	2028	South Konea
Vokscopter	**	6.2	Air Taxi	Multicopter	Electric	Piloted	VoloCity	2020	2022	Germany
Lilium	t	6.2	RegionalCargo	Vectored Thrust	Electric	Plicted	Jet		2024	Germany
Eve Air Mobility		6.0	Air Tasi	Lift + Cruise	Electric	Piloted	Eve		-	Brazil
Sabrewing		5.9	Cargo	Vectored Thrust	Hybrid	Autonomous	Rhaegal RG-1	2021	2022	USA
Vertical Aerospace	**	5.9	Air Taxi	Vectored Thrust	Electric	Piloted	\A-X4	2021	2024	UK
Airbus	**	5.8	Air Taxi	Multicopter	Electric	Piloted	CityArbus	2019	2024	France
Pipistel		5.5	Cargo	Lift + Cruise	Electric	Autonomous	Nuuva V300		2023	Slovenia
Elroy Air	**	5.4	Cargo	Lift + Cruise	Hybrid	Autonomous	Chaparral	2019	2023	USA
Dufour Aerospace	**	5.2	EMS	Vectored Thrust	Hybrid	Piloted	a Ero 3	2022	2026	Switzerland
Del		5.0	Air Taxi	Vectored Thrust	Electric	Plioted	4EX			USA

Reinvent

(1) https://hnit.com/vp-content/uploads/2021/02/Report_Are-Air-Taxis-Ready-For-Prime-Time_Air_LIH_2021.pdf

Strongly Positioned to be First-tomarket with FAA certified aircraft

What Needs to be Done?

35

Joby's Ability to Get to Market is Unlocked by the Interplay of Three Key Factors:

Aircraft's Technology

Key Technology Highlights

- <u>Noise</u>: 65dBa at hover and effectively silent overhead make Joby quieter than a conversation; designed for pleasant noise profile
- <u>Range:</u> max range of 150mi plus reserves on a single charge
- <u>Safety</u>: each propeller is powered by two independent electric motors creating high levels of redundancy
- <u>Software and tech stack</u>: vehicle simple to fly enhancing safety and pilot accessibility

Reinvent

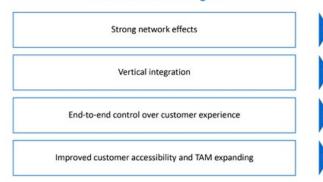
Certification Pathway

- Signed G-1 agreement defines clear route to certification under existing Part 23 regulations
- Part 135 application submitted for airline operations
- Pilot production underway to support production certification
- Certification basis expedites transferability globally

Full Vertical Integration

- Ability to "bear-hug" safety of aircraft by being designer, manufacturer, and operator
- Creates attractive recurring revenue business model that captures profit pools in market
- Ability to guide market entry and development to drive network density, increase value proposition, and create barriers to entry

Traditional Ride-Sharing Case Study .	Uber serves as attractive case study on winner-take- rider and driver density + better customer traffic data → cheaper and faster service Uber has 65%+ market share in many mature marke competes, allowing its economics to improve as it so maturity:	ts in which it			
Take Rate (Market Entry)	Take Rate (Today)	Joby likely to enjoy <u>higher barriers to entry</u> than ride-sharing:			
10%	Mid 20%'s	Proprietary vehicle technology Manufacturing capital intensity Stringent regulatory oversight Potential exclusive use infrastructure			
Rides EBITDA Margin (Today)	Rides EBITDA Margin (Future)	→ Strong mature market profit pool capture for Joby			
20-25% Today	45% Long-Term Target	Uber's most mature markets worth >25% of bookings have already achieved ~45% EBITDA margins			


Reinvent

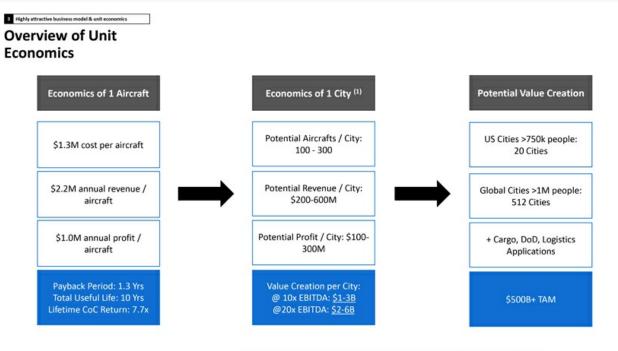
Source: Uber public filings, Reinvent Capital analysis

Highly attractive business model & unit economics Why Joby Chose Ridesharing

Joby doesn't intend to sell vehicles to third parties or individual consumers. Instead, it expects to manufacture, own, and operate the aircraft, building a vertically integrated transportation company that will deliver a convenient app-based aerial ridesharing service directly to end-users

Business Model Strengths

Reinvent


Strategic & Financial Impact

Increases barriers to entry and reinforces leadership position. Virtuous supply & demand dynamics continually improve product

Incentivizes innovation, resulting in improved economics and enhanced value capture

Allows Joby to optimize for customer safety, comfort, and value

Expands potential customer base and use cases, expanding TAM. Product and service are better aligned with the goals and needs of the cities it will operate in

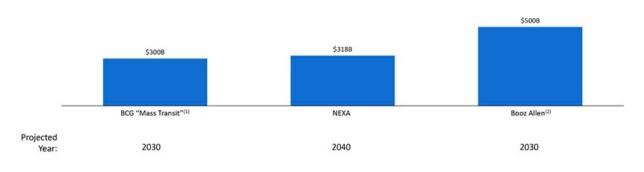
Reinvent

(1) Assumes management utilization assumptions: 7 hours spent in flight per day; average trip length of 24 miles, load factor of 2.3 passengers per trip, \$3.00 per seal mile, \$0.00 cost per available seat mile

Large Macroeconomic and Environmental Tailwinds Megatrends Driving Growing TAM

	Macro Trends		Technology Trends			
Driving	increased demand and urgency		Improving product and expanding modalities			
Increase	ing population density globally	() ()	Compute power – Al, Machine Learning, Autonomous Transport			
	ating land infrastructure oment costs		Energy density — batteries, hydrogen fuel cells			
Green e	energy transportation demand		Light weight materials manufacturing (carbon fiber)			
		Hand and a second secon	Wright's Law: cost curves declining across materials as volumes scale			

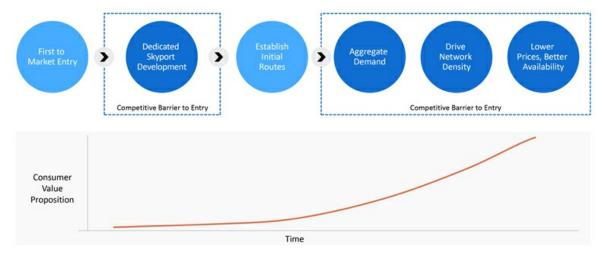
Reinvent


_

Immense Potential TAM → Small Penetration = Large Outcomes Large TAM for UAM

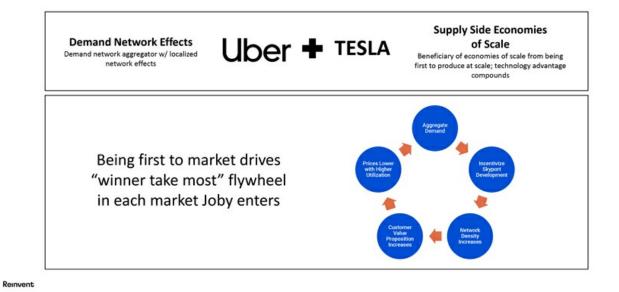
Solving large problems \rightarrow potential for immense shareholder value creation over the next decade

- · Joby long-term mission: save 1 billion people 1 hour a day
- \$500B+ potential market across applications
- · Market is big enough for multiple winners across multiple modalities


Urban Air Mobility TAM Estimates Range from \$300B to \$500B+

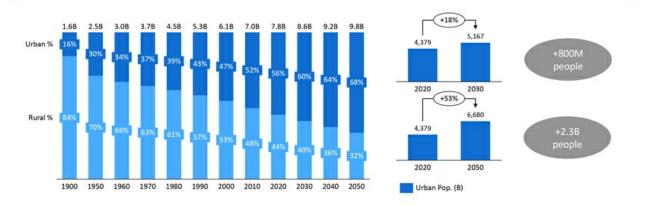
Reinvent

Searce. (1) BCO: The Aerospace industry Ian't Ready for Flying Cars – Here's What OEMs and Suppliers Must Do To Capitalize (2) Booz Alien Hamilton Urban Air Mobility Market Study – 11.21.18


Potential for Compounding Network Effects; "Winner Take Most" Consumer Value Proposition & Network Effects Compound

28

Potential for Compounding Network Effects; "Winner Take Most"
 Why Being the Leader Matters -


Compounding Network Effects

Long-Term Upside Drivers — Macroeconomic Trends

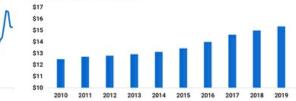
- Over the next 30 years, over 2.3 billion people are expected to move into urban areas. This will drive large increases in congestion and the need for new urban transport solutions
- Joby will be the beneficiary of this increase given the flexibility, cost, and pollution advantage of eVTOL

Global Population Growth & Urbanization

Reinvent

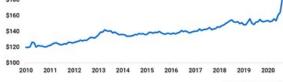
Source: OIVID based on UN World Urbanization Prospects 2018 (https://population.un.org/wsp1)

Long-Term Upside Drivers -Macroeconomic Trends


Land Infrastructure Development Costs

Cost per Mile of Infrastructure Spending

Light Rail Lines	Four-lane Freeway	Subway		
~\$100M / mile (1)	~\$20M / mile (2)	~\$600M / mile (3)		


- Labor and materials inflation trends are driving up land infrastructure . development costs and making aerial alternatives much more attractive
- Joby requires minimal infrastructure costs – Joby infrastructure costs limited to skyports and charging stations. Demand for service may rive incremental opportunity for real estate partners (offices, apartment buildings, etc.) to fund development costs
- You could build a whole city's worth of skyports for one mile of . freeway

Median Hourly Labor Earnings⁽⁵⁾

\$180

Producer Price Index by Industry: Building Materials⁽⁴⁾

Reinvent

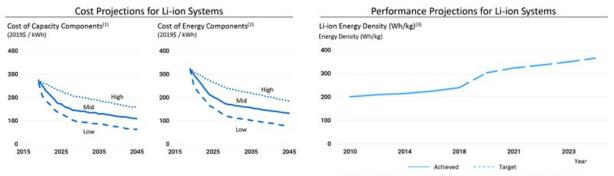
\$200

² Many "ways to win" with upside tailwinds Long-Term Upside Drivers — Macroeconomic Trends

Demand for Green Infrastructure Increasing

Global demand for more energy efficient infrastructure will be a many decade tailwind

"Those that do take action and make bold investments in their people in a clean energy future will win the good jobs of tomorrow and make their economies more resilient and more competitive. So let's run that race [...] this is a moral imperative, an economic imperative. A moment of peril but also a moment of extraordinary possibilities."


– Joe Biden

43

Long-Term Upside Drivers — Technology Improvements

Joby will benefit from <u>continued</u> rapid improvements in battery and other clean energy storage technologies. While Joby's aircraft can hit its specs based on today's battery tech and improvements aren't a necessity, continued battery improvements provide cost and performance upside

Battery Technology Improvements

Li-ion batteries have and are expected to continue to improve at ~5% p.a.

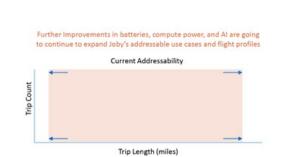
Further, solid state lithium-ion batteries and/or hydrogen technology would likely offer a step function improvement to today's battery technology and are expected to start being commercialized in the next few years. Based on their current designs, both technologies would offer safer, cheaper, and more energy efficient batteries enabling longer range flights and quicker charge times

Reinvent

(2) https://www.org/wp-content/uploads/2019/10/mi_breakthrough_batteries.pdf (3) https://axia.nkkei.com/Spotlight/Nost read-in-2020/Toyota-e-game-changing-solid-state-battery-en-route-for-2021-c

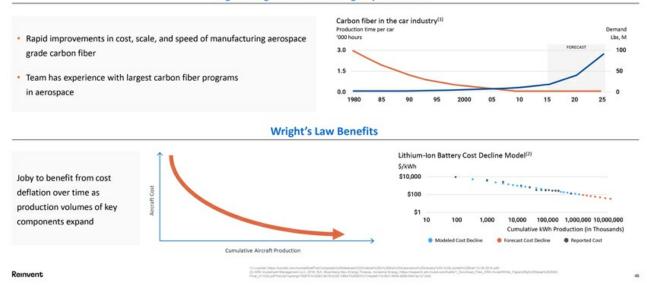
Long-Term Upside Drivers — Technology Improvements

Continued Compute and AI Improvements


- Localized compute power improvements will continue to enable ability of Joby to perform powerful localized calculation to expand automated functions of the aircraft
- Commercial planes already effectively operate on autopilot today. Al will alter the unit economics and form factor to open-up smaller flight lengths and increase network density
- Autonomous flights broaden form factors to smaller #s of people and open up shorter flight profiles

Long-Term Upside Drivers — Technology Improvements

Continued Improvement of Enabling Technologies Will Further Increase Addressable Market


 Hydrogen and/or solid-state (or other) battery improvements will enable longer-range trips (capturing 150mi-400mi+) over time

- Continued localized compute and AI improvements will enable autonomous flights which act as an unlock for trips 0-5 miles while reducing costs of aerial ride-sharing across the board
- Autonomous flights will likely also unlock additional use cases and business models (e.g., transport / logistics, ambulatory, etc.)

4

Long-Term Upside Drivers — Technology Improvements

Light Weight Manufacturing Improvements

Many "ways to win" with upside tailwinds Long-Term Upside Drivers — What an Upside Case Could Look Like

A Fully Embedded eVTOL Future

Autonomous Flights Drive Multiple Use Cases

- Aerial Ride Sharing
- Transport & Delivery
- Ambulatory & Emergency
- Department of Defense
- Short Flight Plane Replacement

Global Adoption

- There are 20 US cities with 700K+ people⁽¹⁾, while there are 557 cities globally with 1M+ people⁽²⁾
- While Joby plans to initially focus on rolling out in U.S. cities, there
 are a plethora of cities globally that would be attractive candidates
 and could follow a similar roll-out blueprint

Reinvent

https://worldpopulationneview.com/us-cities
 https://worldpopulationneview.com/world-citie

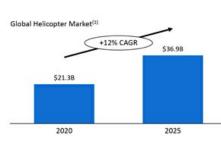
Key Upside Drivers

(01) MACROECONOMIC TRENDS:

- Global Population Density & Urbanization
- Land infrastructure development costs
- Demand for green transportation infrastructure

(02) TECHNOLOGY IMPROVEMENTS:

- Energy density increases
- Continued compute & Al improvements
- Light weight materials manufacturing scaling
- Cost deflation as volumes scale (Wright's Law)


Margin of Safety Drivers

- (1) Many options available to Joby that provide margin of safety in adverse scenarios:
- Large Helicopter replacement TAM
- DoD opportunities in US and Globally
- Pivot to international roll-out
- Selling aircraft
- Strategic interest in accumulated IP
- Adjust target use cases or business model (e.g., transport / logistics)

Downside protection from accumulated IP & strategic value Margin of Safety – What Do Downside Cases Look Like?

Helicopter Replacement TAM Capture Alone Worth \$5B+

- Global helicopter market is expected to grow at a 12% CAGR with large demand for eVTOL⁽¹⁾
- The US has ~9,000 civil helicopters in its fleet ⁽²⁾
- If Joby can capture just 5% of the total helicopter market, this alone would support ~\$5.0bn of value (\$1.9bn revenue x 20% margin x 13x EBITDA)

Existing DoD contracts offer large opportunity with TAM expansion

- \$40MM+ in Contracts secured with an estimated \$100MM+ in progress
- Significant expansion opportunity for uses driven by:
 - DoD desire to embed green technologies into operational use cases
 - Quiet and efficient sound profile enhances logistics use cases
 Large helicopter upkeep and maintenance cost
- Interest from other allied militaries around the world likely to be substantial

44

Reinvent

(1) https://www.marketsandmarkets.com/stanket-responsinescopters-market-253407765.html (2) https://www.statista.com/statistics/778282/commercial-helicopters-feet-size-country/

Downside protection from accumulated IP & strategic value Margin of Safety – What Do Downside Cases Look Like?

Defense Opportunity in the US and Globally

Early Revenue Opportunity that Reduces Technology Risk Dual airworthiness tracks with the Department of Defense & the FAA

- \$40MM+ in contracts secured through Air Force's Agility Prime program with an estimate \$100MM+ additional opportunities in discussion
- + Operations in line with FAA certification & future commercial operations
- + Provides real-time operational data for FAA certification
- + 3 Government Entity Clients
- + Military Flight Release Granted December 10th 2020

"We are announcing a world's first. Joby Aviation is receiving the first militar airworthiness approval for an electric vertical takeoff and landing aircraft."

– Dr. Will Roper, U.S. Air Force & Space Force Acquisition, Technology & Logistic Chief

- The opportunity to sell into the DoD is highly attractive on a standalone basis
- Existing DoD contracts and operations de-risk probability of achieving civilian certification as Joby is able to use and track the vehicle in live settings in advance of getting certified allowing for further product tweaks and development
- We believe that qualitatively, DoD use and certification could provide some level of comfort to the FAA as well

Downside protection from accumulated IP & strategic value Margin of Safety – What Do

Downside Cases Look Like?

Sale of Aircraft Instead of Operate⁽¹⁾

AIR FRANCE

Reinvent

📥 DELTA

 Option to sell aircraft to fund portion of operations and de-risk go-to-market

4

STAR ALLIANCE

्र्यु Emirates

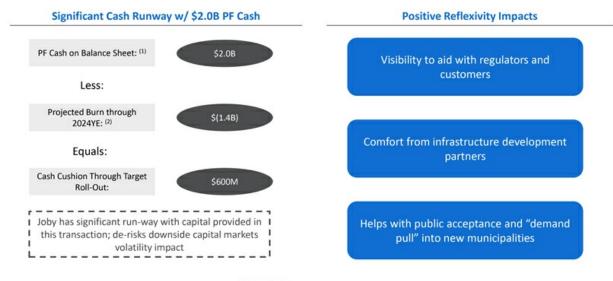
jetBlue

V

Closed loop for specific customers or cargo

International Launch instead of Domestic⁽¹⁾

- Joby strategically tackling the hardest and most stringent market first to create comprehensive blueprint for future cities
- While Joby doesn't intend to launch internationally, there are many attractive markets
- Many civilian and defense opportunities globally
- Centralized government decision making in Middle East; Asia megacity demand


⁽¹⁾ Based on Reinvent downside framing rather than Joby plan

Strategic Interest in Accumulated IP⁽¹⁾

- Before and after type certification we believe there is large strategic value to Joby's accumulated IP over 10 years in developing eVTOL aircrafts
- Similar to FDA drug approval; once approved, will attract interest

Downside protection from accumulated IP & strategic value \$2.0B in Capital De-Risks Path to Market

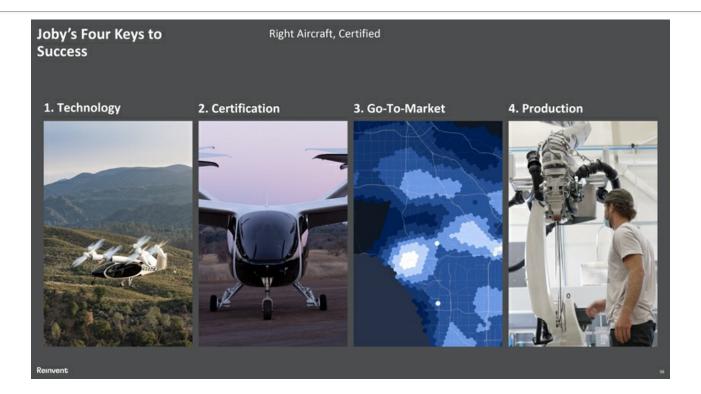
Reinvent

(1) Assumes no redemptions. (2) Includes projected 2021 cash burn through YE 2024 (EBITDA less Capex)

Key Risks & Mitigants

Risk	Mitigant		
Certification Delays	 Significant capital buffer with \$2.0B cash Ability to concurrently test and correct issues 		
	Line of sight to certification		
	Deep expertise in aircraft production manufacturing both within Joby and in strategic partnership with		
Mass Production	Toyota Continued improvements in compositive mass manufacturing techniques 		
	Significant global TAM allows for Joby to quickly adapt go-to-market plans post certification		
Local Regulations	 Potential economic impact, strong consumer demand, and environmental benefits mitigate negative receptivity risk 		
	 10+ years experience of R&D with the only full-scale vehicle flying in the air 		
Competition	 Outstanding aircraft technology specs among competition Diligence suggests universal view of strong likelihood to be first to market 		

53


Key Risks & Mitigants

Risk	Mitigant		
Consumer Demand & Willingness to Adopt	 Convenience, speed, and competitive per mile pricing will drive demand once consumers embrace new technology Certification and testing stats will give confidence on safety while hearing the aircraft in action will deliver acceptance of its noise footprint Urbanization and congestion trends will increasingly make alternative options look more and more attractive 		
Federal Air Traffic Capacity	Joby's Design allows for integration into existing Air Traffic Control System with clear path to scale operations		
Aircraft Utilization & Economics Fail to Meet Expectations	 Joby aircraft can earn high ROICs and low payback periods from conservative utilization assumptions Model assumes pricing driven down to UberX cost; ability to use price to offset utilization shortfalls 		
Technology Fails to Achieve Expectations	 1,000+ flight tests to date with extensive testing over 10 years of component design and manufacture Full-scale vehicle, with airworthiness certification from US Air Force 		

54

Joby Vehicle Advantage:

Technology Certification Go-To-Market Production

Joby Vehicle Advantage: Technology

Key Technology Components & Innovations

These advancements are hard problems to solve, a product of Joby's 10+ years of R&D, and act as key differentiators to competition.

Advanced Flight

- Advanced flight control software makes the aircraft simple for our pilots to operate and control
- · Fly-by-wire flight controls reduce pilot workload
- Automated 'envelope protection' mitigates pilot error by inhibiting commands that exceed safe operating limits
- Frees pilot to focus on the mission, situational awareness and rider experience

Reinvent

Electric Propulsion

- Proprietary propulsion system developed over 10 years
- Distributing multiple smaller and simpler electric motors across the aircraft enables:
- <u>Safety</u>: no single points of failure across aircraft systems
- <u>Noise:</u> electric motors are quiet
- <u>Economics</u>: reduced maintenance downtime; no expensive aviation fuels

- Motor design refined over 10 years of work
- Patented direct drive motor with integrated controls & inverter

- No commercial equivalent
- · Manufacturing automation to support scale

Joby Vehicle Advantage: Technology

Investing In Designing, Manufacturing, and Testing Inhouse

10+ Years of In-house R&D

Production and testing done at our San Carlos facility

Production line prototyping underway

Fast engineering iteration cycles

- · Gaining experience for mass manufacturing
- Higher control & success likelihood over the certification process

Reinvent

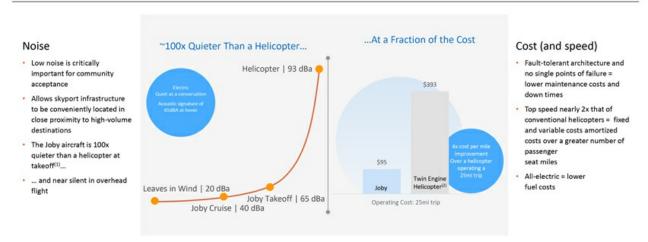
Advanced Manufacturing Improves Unit Cost, Performance, and Weight

- · Reduction in materials and weight
- Increases speed of manufacturing
- Subtractive backups to de risk
- certification

- Composite automation increases precision and speed with less waste
- 10x faster compared to human worker
- 500 labor hours per aircraft reduction
- Significant reduction in material waste

Joby Vehicle Advantage: Technology

Stringent Testing Across All Components

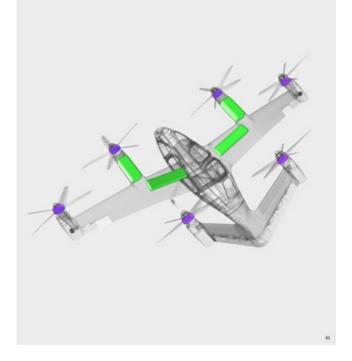


Battery undergoing electrical test

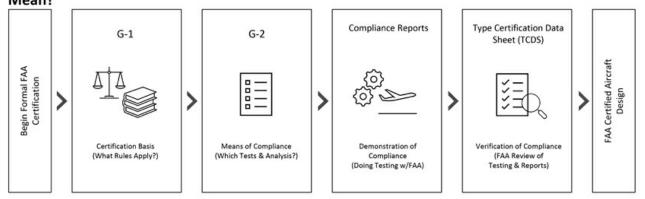
Battery pack drop test

Joby Vehicle Advantage: Technology Joby Aircraft versus Helicopter

Step Change Beyond Existing Helicopter Technology


Reinvent

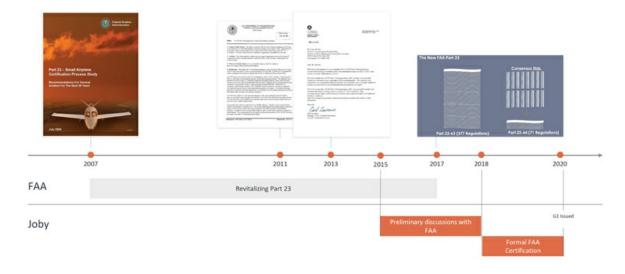
(1) dBA is a logarithmic measurement, accordingly, a 3 dBA increase represents roughly a doubling in acoustic intensi (2) AircraftCostCalculator (Silkonsky 5-76C+) – Based on 120mph helicopter block speed


Joby Vehice Advantage: Technology Joby Aircraft versus Helicopter

Safety

- Distributed electric propulsion rather than a centrally-located internal combustion engine, allows for a fault-tolerant overall architecture for the aircraft with high levels of redundancy
 - 6 propellors can fly safely with the loss of any one propellor
 - Each motor is redundant and powered by two separate inverters
 - Each inverter is wired to a separate battery pack
 - 4 isolated and redundant battery packs on board
- Motor continues to function if an inverter or pack fails
- Batteries in wing away from passengers
- · Long range battery pack allows for:
- More emergency options
- Able to fast charge
- Longer operating lifetime
- Mission flexibility
- · Aircraft has no single points of failure across aircraft systems
- Safety is a core value at Joby. Safety is not only a prerequisite for any commercial aviation operation, safety is the foundation that enables innovation and will always be key to Joby's success

What Does a G-1 Certification Mean?



62

G-1 Certification creates alignment with the FAA on the set of rules that will ultimately determine certification

- 85% standard certification tests; 15% new (three things: fly-by-wire, vertical takeoff, batteries)
- Moves from conceptual exercise with the regulator to a discrete set of tasks
- · Upon completion of tests and analysis, FAA issues certification approval
- · Can do concurrent testing; if one delays, you keep going with the others

Paving the Certification Path Was Over a Decade of Hard Work...

Reinvent

to Progress Well

Ioby's Progress					
Certification Basis	Means	of Compliance	Colored Compliance		Verification of Compliance
Finished		In Progress		Starting in 2023	

Part 23 Certification Was a Conscious and Advantageous Choice

1	Airplane Part 23	Part 23 provides flexibility and certainty
-	Helicopter Part 27/29	 Pilots are widely available Use of existing aviation infrastructure Clear certification pathway Certification basis expidites transferability globally
Ņ	Special Part 21.17(B)	

65

Joby Vehicle Advantage: Certification Overview of Certification Path

Key initial unlock is type certification: Joby already has signed G-1 agreement defining the discrete path to certification

Part 23 Type Design Certification

Purpose

Allows for the manufacture of aircraft meeting the approved design to be issued a standard airworthiness certificate in order to fly commercially in the National Airspace System. The G-1 defines Joby as a normal category piloted electric airplane that can also takeoff and land vertically

Process

Joby comes to final agreement on tests that meet G-1 certification basis

For Joby,

PEAK AND

85% traditional airplane requirements 15% special conditions – batteries, take off and land vertically, fulltime fly by wire

- Joby demonstrates that to the FAA through testing and analysis
- The FAA issues type certification

Joby aircraft eligible for commercial operations

- Benefits
- Defining Joby as airplane allows access to 300k licensed airline pilots versus 30k pool of helicopter pilots
- pilots versus 30k pool of helicopter pilots

 Certification basis expedites transferability globally
- Joby is the first and currently only company to be approved on this path

Reinvent

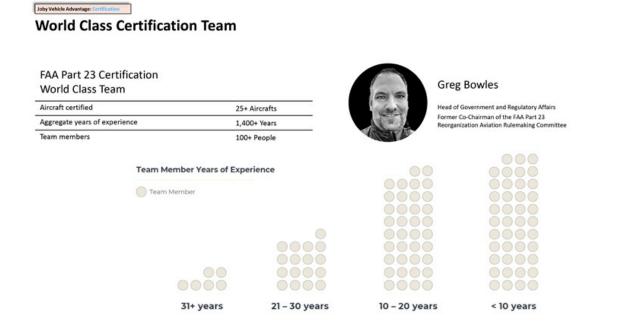
Part 135 Operational Certification

Purpose

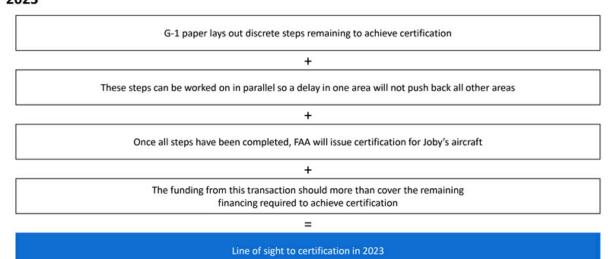
- Part 135 certified air carries can conduct commercial operations Process
- Standard process and largely paperwork
- Checklist includes items such as a drug testing program, prepare a manual regarding whether you will allow HAZMAT on board, and maintain a secure location for your aircraft
- Bonnie has managed similar process at JetBlue and has decades
 of experience

Benefits

· Provides low risk path and allows Joby to operate commercially


Production Certification

Purpose

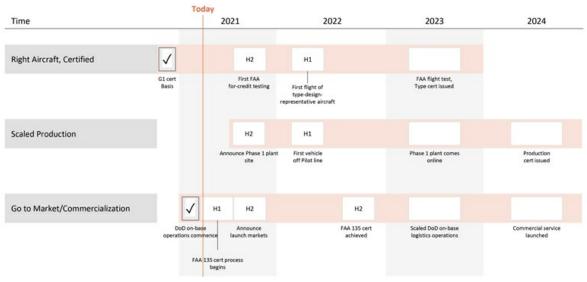

A production certificate is an approval to manufacture FAA certified airplanes

Process

- Standard path for FAA to approve proposed manufacturing facilities
- FAA conducts a quality system audit to determine compliance with the applicable requirements. This audit evaluates the applicant's organization, production facility, quality system, and approved quality system and design data for compliance with applicable requirements.
- Notifies the applicant in writing of any corrective actions required
- Toyota partnership and expertise helps de-risk this process
- Benefits
- Permits Joby to build out manufacturing footprint in multiple geographies including outside the U.S.

Line of Sight To Certification in 2023

68


Go-To-Market Unlock

There are 5 key categories of unlocks that impact the manned UAM market, all of which are benefitting from positive tailwinds:

69

	Regulation	Infrastructure	Technology	Public Acceptance	Customer Acquisition
Key Aspects	 Airworthiness certification for UAM vehicles Integration of UAM into airspace architecture Pilot training and certifications 	 Air traffic control integration Skyports equipped with battery swapping or charging capabilities Low-latency network connectivity 	 Electric propulsion (battery density, heat dissipation, charging, battery fire suppression) Consumer platforms capable of facilitating multi- modal mobility integration 	 Citizen concerns around noise, privacy, land use, and visual disruption Rider trust in safety of UAM vehicles 	 Educate consumers and acquire customers Embed Joby into typical commuting and traveling decision making
Trends	 Joby received G-1 certification which provides clarity on remaining steps to certification 	 City and infrastructure developer interest in Joby and potential partnerships 	 Technology continues to improve (e.g., battery technology improvements) 	 Joby's performance in noise and safety specs unlocks a more seamless urban integration Convenience and accessibility will provide benefits to cities and consumers 	Uber partnership drives simpler customer acquisition and solves first / last mile

Major Milestones: Certification, Production, and Commercialization

70

Roll Out Strategy Overview

Start in one city with a few aircrafts

.

- · Optionality for which city to start in
- Will use initial city roll-outs to develop full blueprint for following cities
- Keep in 2-3 cities through 2025; then begin expansion Build and prove out density in initial cities to start benefitting from local network effects

Wide Urban Expansion

- Large number of target cities that align well to key criteria creates optionality at all stages
 of the rollout process and hedges against certain cities moving slowly through regulation or support
- Key criteria: population density, travel distances and congestion, per capita GDP, existing infrastructure, Airport O&D traffic, Fortune 1000 presence

75

Joby has optionality to decide on initial and subsequent roll out cities throughout its roll out, weighing aspects of viability, city support, and infrastructure development support to optimize goto-market

Path to Increasing Density in Cities

Joby is expected to start as fixed routes (airport to fixed places w/ highest demand) \rightarrow interest in incremental nodes once consumer acceptance there \rightarrow potential in the future for this to be on demand versus scheduled service

Infrastructure and Financing Partners

 At scale, skyport access should significantly impact real estate, similar to subway stops near housing or helipads on luxury apartment buildings

 Strong interest from real estate parties to develop private infrastructure; landlords and governments have already expressed interest in wanting Joby to come to them

- Traffic and environmental benefits provide incentives for city officials to want Joby in their city
- Recent partnerships with: REEF, Signature Aviation, Related, and Macquarie demonstrate real estate partner enthusiasm and provide a key competitive edge

Reinvent

Node Density

- · An aerial mobility network is nodal vs. the path-based nature of ground mobility
- Each new node added to the network adds connectivity to all the other nodes, whereas each new mile of road, rail, or tunnel only extends one single route by one mile
- In a nodal network, a linear increase in the number of nodes leads to an exponential increase in the number of connections
- This critical scaling feature is particularly powerful given increasing cost per mile of infrastructure development

Joby Vehicle Advantage: Go-To-Market

Municipalities and Consumers

Noise and Safety are the Two Key Unlocks to Drive Municipality and Consumer Adoption

√−

Noise

100x quieter than a helicopter means minimal disruption and annoyance. Allows for route expansion and operations in and out of new skyports that are nearer to where people want to live and work. Fits within existing noise restrictions and curfews

Safety

Rigorous FAA certification process should give confidence to municipalities. Restrictions and rules around the operation of skyports exist today

F		
	TE	

Municipalities

Work with target cities to explain benefits (environmental, traffic, cost, convenience, safety) and gain zoning approval and government support to roll out Joby in their city

Consumers

Start with high value, typically highly inconvenient routes at competitive prices to gain consumer intrigue

73

Joby Vehicle Advantage: Go-To-Market

Operations and Air Traffic Control

Aviation rules	How we plan to operate	Timeline
Air Carrier Certificate	Joby FAA Part 135	Mid 2022
Pilots	Commercial level pilots	Exists today
Tim Airspace	Existing VFR/IFR Rules	Exists today

· Part 23 planes fit within existing ATC frameworks

Joby's business model is powerful at 150-300 aircrafts, which fits within existing ATC capacity

* Importantly, there is precedent for ATC creating air corridors or lanes that Joby could use for more frequent operations within congested airspace

· Joby plans to start with VFR certification but anticipates moving quickly to IFR certification thereafter

Reinvent

Joby Vehicle Advantage: Go-To-Market

Step 1

Select your destination through the Joby app or a partner app like Uber

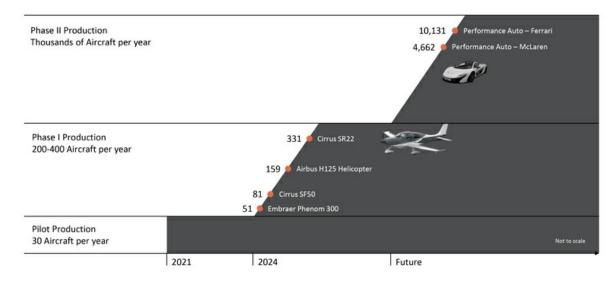
Step 2

The Joby service will synthesize a trip for you, starting with a rideshare pickup to the nearest skyport

Step 3

At the origin skyport, board a shared Joby aircraft and fly to the destination skyport at up to 200 mph

Step 4


At the destination skyport, another rideshare car will be sequenced to meet you just as you arrive

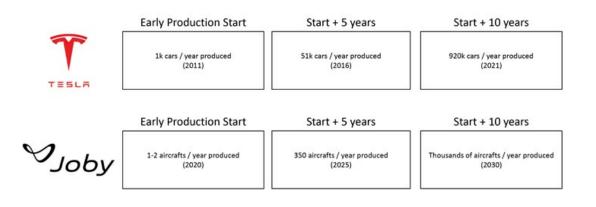
75

Staged approach to production supports certification and growth. Utilizing modern production methods to support rapid scaling.

76

Joby Vehicle Advantage: Production

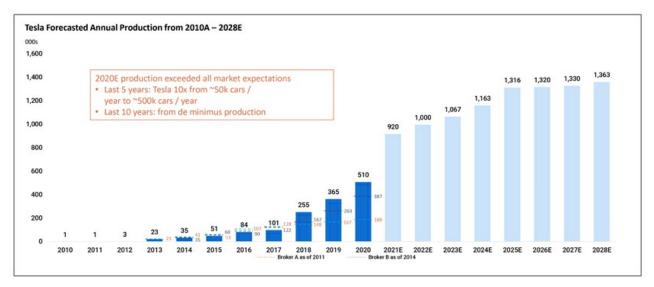
Joby Production Ramp Precedents


<i>∽</i> Joby	TESLA	Electric vehicles with full vertical integration
JUUY	Cessna	Light weight airplane production – current and historical
Designed for aerospace grade	()	Carefully engineered mass production of vehicles
production, at automotive scale	SPACEX	Complex aerospace mass production

77

Joby Production Analogy: Tesla's Ramp to Mass Production

Joby Aircraft Designed from Outset to Manufacture at Scale with Aerospace Quality



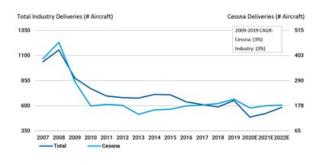
Reinvent

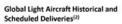
e. Tesia public filings

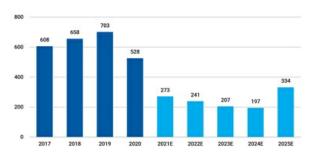
Joby Vehicle Advantage: Production Consistent Outperformance Relative to Production Expectations

Reinvent

ource: IHS forecasts (2021E-2020E), Broker Estimate

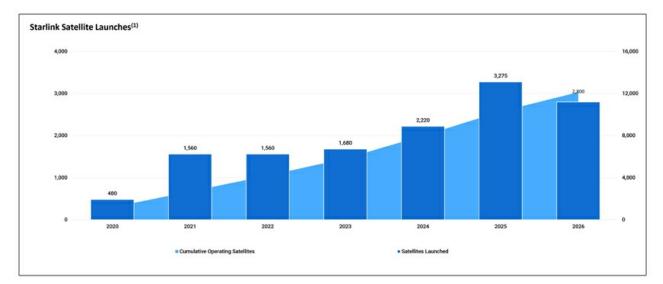

Toby Vehice Advantage: Production


 Global light aircraft production was at >1,000 planes / year as recently as mid 2000s



 At 1,000 aircrafts per year (roughly Joby's expected production in 2027), Joby has a powerful business model given their strong per aircraft unit economics and scale benefits starting to take hold

Cessna Deliveries Declined Roughly in Line with the Market from 2009 – $2013^{\left(1\right)}$



Reinvent

(1) Jefferies estimates, Company data (2) Cirkum

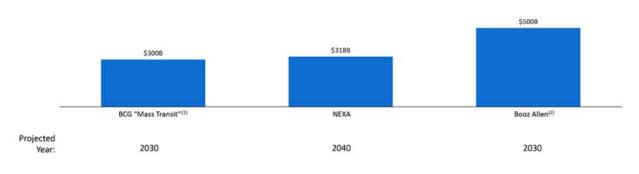
Starlink Has Shown Ability to Quickly Scale Aerospace Grade Production

Reinvent

(1) FCC filings, Covien and Company estimates

Massive and Growing Market

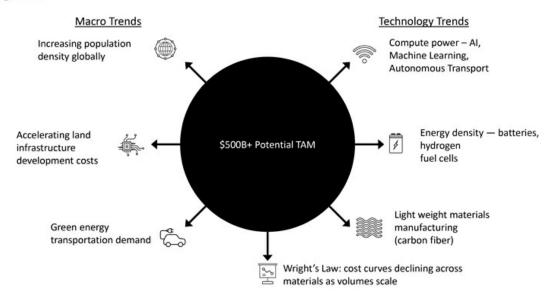
Potential Use Cases


		Ĺ.	Q_\$ ⁹		ШŶ		A
Use Case	City to Airport	Intra-city	Inter-city	Medical transport	Sightseeing	Commuter	Leisure
Description	Rides to and from airports	Travel within a city	Travel between cities	Medical transport of people and supplies	Tourist activities and trips	Home to work and back	Travel to destination
Example	Manhattan - JFK	Business center to an entertainment event	NYC - Philadelphia	Accident site to a hospital, rapid medical transport for supplies or organs	Grand Canyon	Suburbs to downtown	NYC - Hamptons
Reasoning	Limited infrastructure requirements, avoids traffic	Attractive for time- sensitive flyers, business travel	Unlocks new commuting, tourism, and business opportunities within regional areas	Avoids traffic and unlocks higher speed travel with potentially life- saving implications	Differentiated experience, helicopter replacement	Speed, predictability, and access to distances further outside a city	Makes destinations more accessible, start vacation during travel to location

Large TAM for UAM

Solving large problems \rightarrow potential for immense shareholder value creation over the next decade

- · Joby long-term mission: save 1 billion people 1 hour a day
- \$500B+ potential market across applications
- · Market is big enough for multiple winners across multiple modalities


Urban Air Mobility TAM Estimates Range from \$300B to \$500B+

Reinvent

Searce. (1) BCC: The Aerospace Industry Isn't Ready for Flying Cars – Here's What OEMs and Suppliers Must Do To Capitalize (2) Bocz Alien Hamilton Urban Air Mobility Market Study – 11.21.18

Megatrends Driving Growing TAM

Future Market Size

Market size increases as the technology and business model improve creating a virtuous cycle

Technology factors
 Business model factors
 Market factors

86

Competitive Dynamics

Competitive Aircraft Configurations

	Multicopter Thrusters only for lift, cruise via rotor pitch	Lift + Cruise (fixed wings) Independent thrusters used for cruise and for lift	Vectored Thrust Thrusters used for lift and cruise
	C.S.S.		
Benefits	 High redundancy Significantly quieter than helicopters but louder than other form factors Lower maintenance and lightweight 	 Redundancy benefits of multicopter without collective or cyclic actuation 	Optimized for both hover and cruise Lift provided by wings for cruise for highest efficiency High cruising speeds
Implications	 Slowest cruising speeds / least efficient More susceptible to adverse weather conditions Low occupancy Lower value proposition and market size 	Suboptimal for hover or cruise Lowest thrust-to-weight ratio decreasing efficiency Low occupancy Complexity of having two different propulsion systems	Greater technical complexity

Reinvent

Source: Wisk, Volocopter, evtol.nevs, NASA.go

Each Airframe Configuration is Best Fit For a Specific Use Case

Vectored Thrust		All of the above, Improved efficiency for both short and long trips	Full service aerial taxi: Intra-city Suburb-to-city From city-to-city	SJOBY
Lift + cruise (Fixed wings)	Mar and a start of the start of	Medium-haul intracity	Suburb-to-city aerial taxi: From airport to city From home to office	Misk ARCHER
Multicopter	E	Short-haul intracity	City aerial taxi: From home to office From train station to home	VOLOCOPTER CHANG
Main airframe configurations		Use Case	Types of Trips	Players

Reinvent

Source: Pitchbook, companies' websites, Reinvent Technology Partners analysis

Competitive Positioning

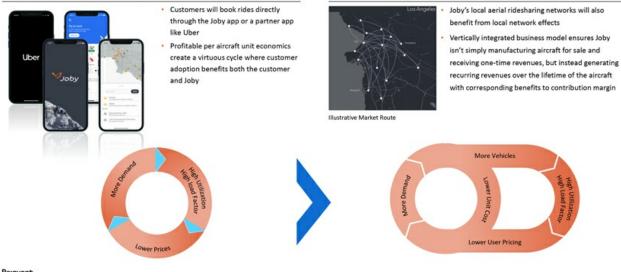
With Over a Decade of Engineering and 1,000 Test Flights, Joby has Built the Leading Product and is Closest to Market

	Conceptual Design	Sub-scale Prototype Testing	Full-scale Prototype First Flight	Transition from Vertical to Wing-borne flight ⁽²⁾	Certification Basis Confirmed	Certification Testing Complete	Years of Development	Commentary
SJoby	1	~	1	1	\checkmark		12	Leading product that is closest to market
wisk/	1	~	1	1			11	Shifting model from autonomous and recreational one-seater systems
GHVNG	1	~	1	n/a			7	China-based with short urban trip focus. Autonomous focus makes regulatory path much more uncertain
	~	~	1	n/a			7	Short-range decreases probability of scaled roll-out. Limited customer value proposition at short range and autonomous focus makes regulatory path much more uncertain
💠 เเเเบก	~	√a)					6	European certification approach; plane architecture implies high energy usage at takeoff and landing
13 = 14	~	~	1				7	Focused on cargo and larger plane designs
VERTICAL	~						5	British based focused on European market
=V=	~	~					3	Shifted designs a few times, behind in R&D
MARCHER	~	~					3	Minimal R&D experience and team of <150

Reinvent

Source: Mothbook, companies' websites, Nervent Technology Partners analysis (1) Transition from vertical to wing-borne flight generally viewed as the most technically challenging aspect of flight envelop (2) Considers the Likum's based ontotroop as a subscalar version of Likum's planned T-wast outo-market aircraft

Joby is in Pole Position



91

Key Business Drivers & Unit Economics

Overview of Joby's **Business Model**

Compelling Unit Economics...

... Underpin Strong Business Model

93

The Power of Vertical Integration

Vertical Integration is a Key Differentiator for Joby

- Fully-vertically integrated business model allows Joby to capture all of the economics created by first mover advantage and barriers to entry
- Operating ridesharing service rather than selling vehicles is important in retaining full economic control of value chain and leads to more recurring business model
- · Tight integration with the hardware drives safety
- When manufacturer runs the service, it incentivizes continued innovation for the consumer

Joby captures all the end-user value it creates

94

Joby Business Model

- Joby's "fuel" costs are green, largely predictable, and comparatively cheap
- Vertical Integration, real estate partnerships, and digital first operation drive much more profitable per flight economics
- Competitive moat and first mover advantage should lead to a winner-take-most market dynamic

Airline Business Model

- × Airlines don't make money through cycles because of fuel costs and variability
- High fixed and variable costs force airlines to fly negative margin flights
 - Airport fees, aircraft lease payments, and pilot / personnel salaries create a high fixed-cost base

95

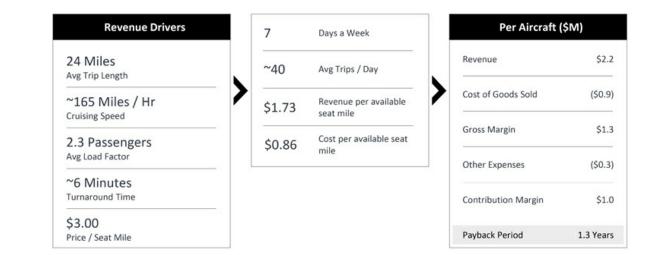
 Competition leads to downward pricing pressure

Why is CASM so Low?

Fewer mechanical parts means <u>lower maintenance</u> <u>costs and downtime</u> Pilots cheaper than helicopters because Part 23 general aviation certification allows Joby to access helicopter and airplane pilots No hydrocarbon fuel is good for both the bottom line and the environment Top speed ~double that of conventional helicopters, will deliver <u>faster operating</u> <u>speeds</u> and amortize fixed and variable costs over a greater number of passenger seat miles

46

Enables end user pricing that existing aerial alternatives can't match

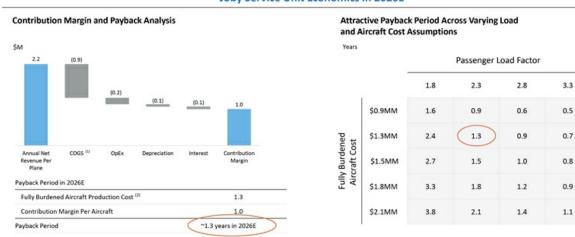

Battery Cost is a Less Significant Driver of Unit Cost Compared to EVs

Reinvent

(1) https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/making-electric-vehicles-profitable#

Service Unit Economics at Scale in 2026

Reinvent


Service Cost Unit Economics at Scale in 2026

~22¢	Pilot
~19¢	Maintenance Cost incl. Labor
~11¢	Skyport Support / Landing Fees
~13¢	Battery / Charging (~30kW/Trip, 1Y Replacement)
~9¢	Aircraft & Insurance

7	Days a Week
~40	Avg Trips / Day
\$1.73	Revenue per available seat mile
\$0.86	Cost per available seat mile

Per Aircraft (\$M)						
Revenue	\$2.2					
Cost of Goods Sold	(\$0.9)					
Gross Margin	\$1.3					
Other Expenses	(\$0.3)					
Contribution Margin	\$1.0					
Payback Period	1.3 Years					

Attractive Unit Economics and Payback on Each Aircraft

Joby Service Unit Economics in 2026E

Reinvent

(1) COGS includes maintenance costs, fully burdened plot costs, landing fees, battery replacement costs, and feet management and customer service staff cost (2) Inclusive of manufacturing costs only for 200fE as financing costs are built into contribution margin.

Payback Period Sensitivity Analysis (Years)

	\$4.00		\$3.50	\$3.00 • 1.3	\$2.50		\$2.00 5.1				
				~				(Cruising S	peed (mp	oh)
Load Factor	(Passengers)		1	1.3 Years			Turnaround Time	70	110	150	190
3.0	0.8		Payback Period						1.8	1,1	0.9
2.5	1.1		. ayuudh i chidu					12.9	2.4	1.5	1.1
2.0	1.9	1	oad Factor: 2.3	Cruise Sp	eed: 165 mph		9.0	68.4	3.3	1.9	1.5
1.5	5.8	F	Price/Mile: \$3.00	Turn Time	: 6 mins		11.0	n/a	4.7	2.6	1.9
1.0	n/a	F	ull Aircraft: \$1.3M				15.0	n/a	16.7	5.3	3.5
							20.0	n/a	n/a	72.2	13.0
			Fully Bu	irdened Aircra	ft Cost						
	\$0.9M	\$1.1M	\$1.3M	\$1.5M	\$1.8M	\$2.1M	\$2.3M		Joby 202	6 estimate	
	0.9	1.1	• 1.3	1.5	1.8	2.1	2.3				

Reinvent

Note: Mutually exclusive calculations should not be merged

Market Economics

Indicative Market Returns

20 node network 300+ aircraft in fleet \$\$500M annual revenue \$\$225M service contribution margin

Transaction Context

Transaction Terms Overview

Transaction Structure

- Joby and Reinvent are in discussion to combine in order to grow the industry leading aerial ridesharing business as a public company and achieve commercialization for its eVTOL aircraft by 2024
- Restructured founder shares and private warrants to create long-term alignment

Valuation

- Transaction implies a fully diluted pro forma aggregate value of \$4.6Bn (2.3x AV / 2026E Revenue)
- Existing Joby shareholders to roll 100% of their equity and expected to receive approximately 75% of the pro forma equity⁽¹³⁾⁽²⁾

Capital Structure

- The transaction will be funded by a combination of Reinvent cash held in a trust account and proceeds from Reinvent PIPE for an aggregate of up to \$1.68n⁽¹⁰²⁾
- Pro forma for the transaction, Joby expects to have up to \$2.0Bn⁽¹⁾⁽²⁾ of cash to fund growth and commercialize its operations

Reinvent

Nonterminan converbile based or \$10,00 per altera prior and encloses potential dializes from out of the noney. Renvent variants and out-of-of the noney founder shares. Pro-forms forther examines on encloyed on the dialogn of the noney for the noney for the noney founder shares. Pro-forms (2) Committed Funding is inclusive of an SSISMM bit yourshife (PPC) and a STMM User convertile note which converts inmediately point to transaction closing, the 7.3MM shares to be assued to User are excluded from the Oper (Committed PPC) and a STMM User convertile note which converts inmediately point to transaction closing, the 7.3MM shares to be assued to User are excluded from the Oper (Committed PPC) shares (Instein)

DeSPAC Structure Aligns Interests for Long-Term

Reid Hoffman to join board of directors at de-SPAC for three-year term followed by a consecutive three-year term by Michael Thompson

✓ Up to five-year lock-up on Reinvent shares

Price-based vesting triggers of \$12, \$18, \$24, \$32 and \$50 per share on founder shares

 Senior Joby management and material existing investors subject to lock-up arrangements substantially similar to the founder shares

✓ \$100MM+ investment in PIPE from Reinvent branded investment vehicles

Strong Alignment for Joby and Reinvent to Drive Significant Long-Term Value for Shareholders

Joby Investor Base

High quality financial and strategic investors deploying a mix of growth-oriented and value-oriented strategies

Reinvent

Financial Overview

Joby Base Case Model & Drivers

	2021E	2022E	2023E	2024E	2025E	2026E
Total Revenue				131	721	2,050
Growth(%)					450%	185%
Recurring Aircraft Revenue ⁽³⁾	0.00	2	1	2	186	796
New Aircraft Revenue	850		10	131	535	1,254
Recurring Aircraft Revenue Contribution (%)					26%	39%
(-) Cost of Goods Sold ⁽²⁾		÷.	88	55	304	867
Gross Profit				76	417	1,183
Gross Profit Margin(%)				58%	58%	58%
Adjusted EBITDA ⁽³⁾	(151)	(190)	(165)	(69)	185	824
Adjusted EBITDA Margin(%) ⁽³⁾					26%	40%
Total Capex	58	68	166	552	903	1,444
Depreciation & Amortization	3	7	19	47	113	219
Assumptions						
Revenue Generating Aircraft (Average)	2	7	26	141	413	963
Number of Cities		8		1	2	3

Reinvent

Recurring Avroat® Revenue = ProcrYeas Average Average Average * Current Year Revenue per Avorat, Joby Service segment only.
 COOS industes plot cests, maintenance labor and parts cests, firet management and customer service staff cests, and battery replacement cests.
 Avuale EBITER is a non-GAAP Rearroid metric defined by us as net loss or gain before inferent express, prevision for income taxes, deprecision and amortization

(2) Adjusted EDITUA is a non-UAAP triancial metric defined by us as net loss or gain before interest expense, provision for income taxes, depreciation and amortization expense stock based compensation.

Management Case – Per Aircraft Unit Economics

Key Assumptions and Performance Indicators in 2026 – Joby Service

Aircraft

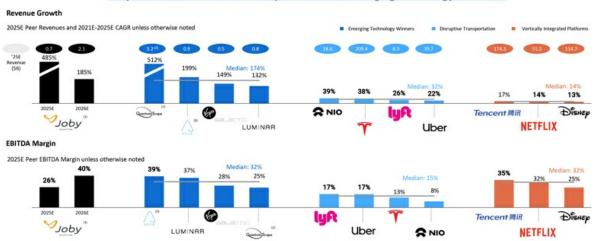
- Average of 963 total aircraft (850 in Service segment)
- Fully loaded manufacturing cost of \$1.3MM per aircraft
- Average useful life of ~50k flight hours which equates to over 15 years

Bottoms-Up Cost Analysis

- Fully loaded annual COGS, operating expense, depreciation, and interest of \$1.2MM per aircraft
- COGS includes pilots, landing fees, customer service, and maintenance
- Operating expenses includes SG&A
- Fully burdened CASM of \$0.86 ⁽²⁾

Aircraft

- ~7 hours spent in flight per day with ~12 operating hours ⁽¹⁾
- ~12.4MM total flights per year with ~35.4k flights per day
- Average trip length of 24 miles
- Load factor of 2.3 passengers per trip

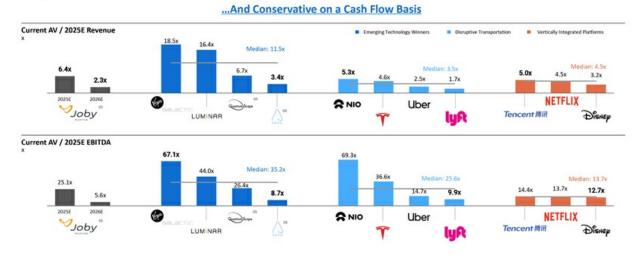

Revenue & Payback

- Net revenue of \$2.2MM and \$1.0MM annual profit per aircraft
- Based on \$1.3MM cost, payback period of ~1.3 years
- Price point of \$3.00 per seat mile (\$1.73 RASM at full load factor) is cheaper than Uber Black for an individual

Reinvent

Notes: (1)Assumes 14 operating hours per vesklay and 8 operating hours per veskend day (2)CASM = (DOGS plus operating expense plus depreciation) / Total Available Seat Miles of 1,188MM

Vertically Integrated Model Will Provide for Strong Growth and Margins



Joby Boasts Substantial Scale of up to ~4x Other Emerging Technology Winners...

Reinvent

(1) July Reena growth brawn year over year for 20255 and 2026F. Revenue and Adjusted EBITOA rangin as at 2026F and 2026F respectively. Adjusted EBITOA is a non-GAAP francial metrix defined by use and trainer gain brainer agreeme, provinsion for income tasks dependiation and anonization expense, and stock based compensation (2) Revenue growth GARR calculated from 2025F-2025F, revenue and EBITOA margin as at 2028F.

Joby Valuation Consistent with High Growth, Disruptive Companies

Bource: Wall Street Research Estimates as of January 26, 2021, Investor Presentations (1) Assumes pro forms aggregate value of \$4.60m, Adjusted EBITDA is a non-GAAP financial metric defined by us as net loss or gain before interest expense, provision for income tax

(2) Based on 2009E estimates (3) Accessed withe based on interPrivate Acquisition Corp's share price as of January 26, 2021. AEVX's pro-forms shares outstanding and net debt from the time of announce

Reinvent

Long-Term Valuation Potential Relative to Autonomous Peers

Cash Flows Support Attractive Entry Point for Investors

- Present Value of Future Aggregate Value at an Illustrative 20% Discount Rate
- Applies a 25-30x AV / EBITDA multiple range to Joby's 2026E EBITDA to arrive at an Implied Future Aggregate Value
- The applied multiple range is representative of the long-term valuation of premier vertically integrated platforms
- Implied Future Aggregate Value is discounted 4.75 years back at an illustrative 20% rate to arrive at an Implied Current
 Aggregate Value

Significant potential for continued value creation as market matures and Joby rolls out to additional cities

Reinvent

(1) Adjusted EBITIDs is a non-GAAP financial metric defined by us as net loss or gain before interest expense, provision for income taxes, depreciation and amortization expense, and shock based comensation.

Analogous Autonomous and Ridesharing Precedents

Reinvent

urce: PitchBook